953 resultados para Time series. Transfer function. Recursive Estimation. Plunger lift. Gas flow.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of classification of time series data is an interesting problem in the field of data mining. Even though several algorithms have been proposed for the problem of time series classification we have developed an innovative algorithm which is computationally fast and accurate in several cases when compared with 1NN classifier. In our method we are calculating the fuzzy membership of each test pattern to be classified to each class. We have experimented with 6 benchmark datasets and compared our method with 1NN classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use reversible jump Markov chain Monte Carlo (MCMC) methods to address the problem of model order uncertainty in autoregressive (AR) time series within a Bayesian framework. Efficient model jumping is achieved by proposing model space moves from the full conditional density for the AR parameters, which is obtained analytically. This is compared with an alternative method, for which the moves are cheaper to compute, in which proposals are made only for new parameters in each move. Results are presented for both synthetic and audio time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a stochastic simulation technique for subset selection in time series models, based on the use of indicator variables with the Gibbs sampler within a hierarchical Bayesian framework. As an example, the method is applied to the selection of subset linear AR models, in which only significant lags are included. Joint sampling of the indicators and parameters is found to speed convergence. We discuss the possibility of model mixing where the model is not well determined by the data, and the extension of the approach to include non-linear model terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daily sea surface temperatures have been acquired at the Hopkins Marine Station in Pacific Grove, California since January 20, 1919.This time series is one of the longest oceanographic records along the U.S. west coast. Because of its length it is well-suited for studying climate-related and oceanic variability on interannual, decadal, and interdecadal time scales. The record, however, is not homogeneous, has numerous gaps, contains possible outliers, and the observations were not always collected at the same time each day. Because of these problems we have undertaken the task of reconstructing this long and unique series. We describe the steps that were taken and the methods that were used in this reconstruction. Although the methods employed are basic, we believe that they are consistent with the quality of the data. The reconstructed record has values at every time point, original, or estimated, and has been adjusted for time-of-day variations where this information was available. Possible outliers have also been examined and replaced where their credibility could not be established. Many of the studies that have employed the Hopkins time series have not discussed the issue of data quality and how these problems were addressed. Because of growing interest in this record, it is important that a single, well-documented version be adopted, so that the results of future analyses can be directly compared. Although additional work may be done to further improve the quality of this record, it is now available via the internet. [PDF contains 48 pages]