937 resultados para Time scales
Resumo:
In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tertbutyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures. (C) 2013 AIP Publishing LLC.
Resumo:
Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We report on the development of a system of micron-sized reciprocal swimmers that can be powered with small homogeneous magnetic fields, and whose motion resembles that of a helical flagellum moving back and forth. We have measured the diffusivities of the swimmers to be higher compared to nonactuated objects of identical dimensions at long time scales, in accordance with the theoretical predictions made by Lauga Phys. Rev. Lett. 106, 178101 (2011)]. Randomness in the reciprocity of the actuation strokes was found to have a strong influence on the enhancement of the diffusivity, which has been investigated with numerical calculations.
Resumo:
Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.
Resumo:
Aqueous dispersions of graphene oxide (GO) exhibit strong pH-dependent fluorescence in the visible that originates, in part, from the oxygenated functionalities present. Here we examine the spectral migration on nanosecond time-scales of the pH dependent features in the fluorescence spectra. We show, from time-resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, that the migration is associated with excited state proton transfer. Both `intramolecular' and `intermolecular' transfer involving the quasi-molecular oxygenated aromatic fragments are observed. As a prerequisite to the time-resolved measurements, we have correlated the changes in the steady state fluorescence spectra with the sequence of dissociation events that occur in GO dispersions at different values of pH.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.
Resumo:
In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.
Resumo:
In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.
Resumo:
In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM (R) and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to similar to 90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds. (C) 2014 Elsevier B.V. All rights reserved.
Impact of diurnal forcing on intraseasonal sea surface temperature oscillations in the Bay of Bengal
Resumo:
The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.
Resumo:
In this paper we present one of the first high-speed particle image velocimetry measurements to quantify flame-turbulence interaction in centrally-ignited constant-pressure premixed flames expanding in nearisotropic turbulence. Measurements of mean flow velocity and rms of fluctuating flow velocity are provided over a range of conditions both in the presence and absence of the flame. The distributions of stretch rate contributions from different terms such as tangential straining, normal straining and curvature are also provided. It is found that the normal straining displays non-Gaussian pdf tails whereas the tangential straining shows near Gaussian behavior. We have further tracked the motion of the edge points that reside and co-move with the edge of the flame kernel during its evolution in time, and found that within the measurement conditions, on average the persistence time scales of stretch due to pure curvature exceed that due to tangential straining by at least a factor of two. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013); Nath et al., Phys. Rev. E 88, 013010 (2013)] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a ``cold'' accretion flow at 3000Kis too ``hot'' in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.
Resumo:
We report the first detailed study of the kinetics of dispersion of nanoparticles in thin polymer films using temperature dependent in situ X-ray scattering measurements. We show a comparably enhanced dispersion at higher temperatures for systems which are otherwise phase segregated at room temperature. Detailed analysis of the time dependent X-ray reflectivity and diffuse scattering data allows us to explore the out-of-plane and in-plane mobility of the nanoparticles in the polymer films. While the out-of-plane motion is diffusive with a diffusion coefficient almost two orders of magnitude lower than that expected in bulk polymer, the in-plane one is found to be super-diffusive resulting in significantly larger in-plane displacement at similar time scales. We discuss the origin of the observed highly anisotropic motion of nanoparticles due to their slaved motion with respect to the anisotropic chain orientation and consequent diffusivity anisotropy of matrix chains. We also suggest strategies to utilize these observations to kinetically improve dispersion in otherwise thermodynamically segregated polymer nanocomposite films.
Resumo:
Local heterogeneity is ubiquitous in natural aqueous systems. It can be caused locally by external biomolecular subsystems like proteins, DNA, micelles and reverse micelles, nanoscopic materials etc., but can also be intrinsic to the thermodynamic nature of the aqueous solution itself (like binary mixtures or at the gas-liquid interface). The altered dynamics of water in the presence of such diverse surfaces has attracted considerable attention in recent years. As these interfaces are quite narrow, only a few molecular layers thick, they are hard to study by conventional methods. The recent development of two dimensional infra-red (2D-IR) spectroscopy allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) the heterogeneous dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuations and also study (iii) the collective and local polarization fluctuation of water molecules in the presence of several different proteins. The spatio-temporal correlation of confined water molecules inside reverse micelles of varying sizes is well captured through the spectral diffusion of corresponding 2D-IR spectra. In the case of supercritical water also, we observe a strong signature of dynamic heterogeneity from the elongated nature of the 2D-IR spectra. In this case the relaxation is ultrafast. We find remarkable agreement between the different tools employed to study the relaxation of density heterogeneity. For aqueous protein solutions, we find that the calculated dielectric constant of the respective systems unanimously shows a noticeable increment compared to that of neat water. However, the `effective' dielectric constant for successive layers shows significant variation, with the layer adjacent to the protein having a much lower value. Relaxation is also slowest at the surface. We find that the dielectric constant achieves the bulk value at distances more than 3 nm from the surface of the protein.