943 resultados para Tiling geometry
Resumo:
Recent studies have suggested that areal BMD (aBMD) measured by DXA is elevated in patients with DISH. We used peripheral QCT (pQCT) to assess volumetric BMD (vBMD) and bone geometry of the radius, tibia and the third metacarpal bone.
Resumo:
This study evaluated the operator variability of different finishing and polishing techniques. After placing 120 composite restorations (Tetric EvoCeram) in plexiglassmolds, the surface of the specimens was roughened in a standardized manner. Twelve operators with different experience levels polished the specimens using the following finishing/polishing procedures: method 1 (40 ?m diamond [40D], 15 ?m diamond [15D], 42 ?m silicon carbide polisher [42S], 6 ?m silicon carbide polisher [6S] and Occlubrush [O]); method 2 (40D, 42S, 6S and O); method 3 (40D, 42S, 6S and PoGo); method 4 (40D, 42S and PoGo) and method 5 (40D, 42S and O). The mean surface roughness (Ra) was measured with a profilometer. Differences between the methods were analyzed with non-parametric ANOVA and pairwise Wilcoxon signed rank tests (?=0.05). All the restorations were qualitatively assessed using SEM. Methods 3 and 4 showed the best polishing results and method 5 demonstrated the poorest. Method 5 was also most dependent on the skills of the operator. Except for method 5, all of the tested procedures reached a clinically acceptable surface polish of Ra?0.2 ?m. Polishing procedures can be simplified without increasing variability between operators and without jeopardizing polishing results.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
Vessel angulation and large changes in vessel geometry after stent implantation have been associated with an increased risk of target lesion failure (TLF) using bare-metal stents. Second-generation drug-eluting stents (DES)offer superior conformability and inhibition of neointima. The aim of the study is to investigate the relationship between pre and post-implant vessel geometry and the occurrence of TLF at 1 year after treatment with second-generation DES; and to compare the conformability of Resolute and Xience stents.
Resumo:
We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.