849 resultados para TiO2 nanotube array
                                
Resumo:
The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.
                                
Resumo:
In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.
                                
Resumo:
TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.
                                
Resumo:
Titanium dioxide porous thin films on the Anatase phase were deposited onto glass slides by the sol-gel method assisted with polyethylene glycol (PEG). The dip-coated films were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA and DTG), UV-visible spectroscopy and X-ray diffraction (XRD). The photocatalytic activity of the films was determined by means of methyl-orange oxidation tests. The resultant PEG-modified films were crack-free and developed a porous structure after calcination at 500 °C. Photo-oxidation tests showed the dependency of catalytic activity of the films on the number of layers (thickness) and porosity, i.e. of the interfacial area.
                                
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
                                
Resumo:
We investigated the effect of adding titanium dioxide nanoparticles (TiO2) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO2 containing 0.25%-1% TiO2, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO2 to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization.
                                
Resumo:
Photocatalytic materials can minimize atmospheric pollution by decomposing certain organic and inorganic pollutants using sunlight as an energy source. In this paper, the development of a methodology to measure the photocatalytic potential of mortar containing TiO2 nanoparticles is reported. The results indicate that up to 40% of NOx can be degraded by Portland cement mortar containing 30-50% of TiO2, which validates the method developed for evaluating the photocatalytic potential of materials.
                                
Resumo:
Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.
                                
Resumo:
ZnO/TiO2 nanocomposites were prepared by impregnating zinc acetate dihydrate on the surface of titanium dioxide P25, followed by thermal treatment at 350, 600, 750, and 900 °C, in order to investigate the TiO2 phase and titanate formation and the role of the latter in the photocatalytic activity of the nanocomposite. In the nanocomposites, the anatase-to-rutile transition is favored due to the presence of Zn2+, and the conversion is nearly complete at 750 °C. The presence of zinc metatitanate in the sample heated at 600 °C had no significant effect on the nanocomposite photocatalytic activity.
                                
Resumo:
Nickel and palladium dispersed on titania support were submitted to reductive treatment, under hydrogen, at 200 and 500 ºC. After the reductive thermal treatment the materials were exposed to carbon monoxide (10 Torr) and analyzed in the infrared region. The increasing of the electronic density in the metallic d subshell, produced by the reductive thermal treatment, was monitored by the infrared stretching band shift of carbon monoxide adsorbed and it was interpreted as a consequence of the metal-support interactions. The highest effect was observed for Pd/TiO2 system. From the FTIR spectra was also observed that the hydrogen spillover was stronger on Pd/TiO2 than Ni/TiO2 system.
                                
Resumo:
Este trabalho teve por objetivo utilizar o hidrogenoftalato de potássio como molécula modelo para estudos de adsorção em TiO2. Os resultados de adsorção do hidrogeneoftalato sobre TiO2 se ajustaram aos modelos de adsorção propostos por Langmuir e Freundlich, sendo que o modelo de Freundlich descreveu melhor o fenômeno. A adsorção foi função da temperatura e a capacidade de adsorção aumentou de 2,4 para 4,5 mg.g-1 quando se elevou a temperatura de 20 para 30ºC.
                                
Resumo:
The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.
                                
Resumo:
Este trabalho descreve um método de modificação do TiO2 obtido pelo processo sol-gel, através da adição de óxido de cério no momento da síntese. O material foi caracterizado por adsorção de N2 a 77K. A adição de CeO2 aumenta a área específica do catalisador em 135% e reduz o diâmetro de poros. A atividade catalítica desses materiais foi verificada frente à reação de foto-decomposição do hidrogenoftalato de potássio e comparada ao TiO2 comercial P25 da Degussa.
                                
Resumo:
O presente trabalho investiga a degradação fotoeletrocatalítica do corante Azul Básico 41 (AB 41) amplamente utilizado na tintura de fibras sintéticas, utilizando um semicondutor Ti/TiO2 como fotoanodo. 100% de degradação foi obtida após 60 min de tratamento de 8,33x10-5 mol L-1 do corante em 0,1 mol L−1 Na2SO4, pH 2 sob densidade de corrente de 0,40 mA cm−2 e irradiação UV. Ainda foi obtido 80% de remoção de carbono orgânico total, cuja oxidação segue uma reação de pseudo-primeira ordem com constante de velocidade inicial de -0,040 mim-1 e uma eficiência de corrente de 51%. Os resultados são superiores á fotocatálise convencional nas mesmas condições sem a polarização do fotoanodo que leva a 65% de mineralização sob constante de velocidade de -0,024 mim-1.
                                
Resumo:
Vätning av fasta ytor är ett viktigt fenomen i såväl naturen som i en lång rad av industriella tillämpningar. Det är allmänt känt att vätningen av en fast yta styrs av ytans kemi samt struktur. Målsättningen med avhandlingen var att studera hur kemisk heterogenitet och ytråhet på nanometernivå påverkar vätningsegenskaperna hos en fast yta. Ytorna som studerades var titandioxid-baserade kerama ytor som framställdes med hjälp av en sol-gel process. Vätningstudierna utfördes genom kontaktvinkelmätningar, vilket innebär att man mäter vinkeln som vätska/luft-gränsskiktet hos en vätskedroppe bildar mot en fast yta. Ytråheten hos materialen studerades främst genom atomkraftsmikroskopi (AFM). I AFM detekteras ytans struktur av en mycket skarp nål som skannar ytan. Resultaten i avhandlingen kunde framgångsrikt modelleras med existerande teorier för vätning av heterogena ytor.
 
                    