945 resultados para Ti-Mo alloys
Resumo:
Microstructures and electrochemical properties of Ti0.26Zr0.07V0.21Mn0.1Ni0.33Mox (x=0,0.025,0.05,0.075, 0.10) electrode alloys have been investigated. The results of XRD analysis show that the alloys are mainly composed of V-based solid solution phase with body centered cubic (bcc) structure and C14 Laves phase with hexagonal structure. The addition of Mo element can imp ove the activation characteristics, maximum discharge capacity and cyclic durability for the electrode alloys
Resumo:
For (Ti1-xVx)(2)Ni (x = 0.05,0.1,0.15,0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging.
Resumo:
The discovery of the icosahedral phase (i-phase) in rapidly quenched Ti1.6V0.4Ni1-xCox (x=0.02-01) alloys is described herein. The i-phase occurs in a similar amount relative to the coexisting beta Ti phase. The electron diffraction patterns show the distinct spot anisotropy, indicating that the i-phase is metastable. The electrochemical hydrogen storage performance of these five alloy electrodes are also reported herein. The hydrogen desorption of nonelectrochemical recombination in the cyclic voltammetric (CV) response exhibits the demand for electrocatalytic activity improvement.
Resumo:
Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.
Resumo:
Ti-Zr-Co alloys have been fabricated and characterized, and their catalytic performance was discussed for the oxidation of cyclohexane with oxygen under solvent-free condition. The icosahedral quasicrystalline phase (I-phase)-forming ability of Ti-Zr-Co alloys with different compositions was discussed, and it was confirmed that I-phase could be formed as a dominating phase at the Ti-rich composition region from Ti53Zr27Co20 to Ti75Zr5Co20 in as-cast alloys. The composition and microstructure of Ti-Zr-Co alloys present crucial influences on its catalytic activity and selectivity in the oxidation of cyclohexane. The influences of some reaction parameters such as temperature, reaction time, and catalyst amounts were also investigated. Ti70Zr10Co20 alloy containing quasicrystal microstructure showed good catalytic performance with a 6.8% conversion of cyclohexane and 90.4% selectivity of cyclohexanol and cyclohexanone. It behaves as an efficient heterogeneous catalyst for the oxidation of cyclohexane and could be recycled five times without loss in activity and selectivity.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5), (x=0-0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase increases with increasing A] and Mo content in the alloys. The P-C isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (v = 0) to 397.6 mAh g(-1) (x = 0.6) and then decreases to 370.4 mAh g(-1) (x= 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x=0) to 73.8% (x=0.8) at the discharge current density of 1200 mA g(-1). Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x.
Resumo:
Ti and Ti alloys can be applied to steels as a protective coating in view of its excellent resistance to corrosive environment. Cold spraying, as a new coating technique, has potential advantages in fabrication of Ti coating in comparison with conventional thermal spraying techniques. In this study, Ti coatings were prepared on carbon steel substrates by cold spraying via controlling the process conditions. The microstructure of coatings was observed by SEM. The porosity of coatings was estimated by image analysis and the bond strength was tested for comparison of the process conditions. Potentiodynamic polarization and open-circuit potential (OCP) measurements were performed to understand the corrosion behavior of the coatings. The SEM examination shows that the coatings become more compact with the increases of pressure and temperature of driving gas. The potentiodynamic polarization curves indicate that the coating which has lower porosity has lower corrosion current. The polarization and OCP measurement reveal that cold-sprayed Ti coating can provide favorable protection to carbon steel substrate. The polishing treatment of coating surface polishes the rough outer layer including the small pores as well as decreases the actual surface area of the coating, leading to the considerable improvement of corrosion resistance.
Resumo:
The binary A(8)B phase (prototype Pt(8)Ti) has been experimentally observed in 11 systems. A high-throughput search over all the binary transition intermetallics, however, reveals 59 occurrences of the A(8)B phase: Au(8)Zn(dagger), Cd(8)Sc(dagger), Cu(8)Ni(dagger), Cu(8)Zn(dagger), Hg(8)La, Ir(8)Os(dagger), Ir(8)Re, Ir(8)Ru(dagger), Ir(8)Tc, Ir(8)W(dagger), Nb(8)Os(dagger), Nb(8)Rh(dagger), Nb(8)Ru(dagger), Nb(8)Ta(dagger), Ni(8)Fe, Ni(8)Mo(dagger)*, Ni(8)Nb(dagger)*, Ni(8)Ta*, Ni(8)V*, Ni(8)W, Pd(8)Al(dagger), Pd(8)Fe, Pd(8)Hf, Pd(8)Mn, Pd(8)Mo*, Pd(8)Nb, Pd(8)Sc, Pd(8)Ta, Pd(8)Ti, Pd(8)V*, Pd(8)W*, Pd(8)Zn, Pd(8)Zr, Pt(8)Al(dagger), Pt(8)Cr*, Pt(8)Hf, Pt(8)Mn, Pt(8)Mo, Pt(8)Nb, Pt(8)Rh(dagger), Pt(8)Sc, Pt(8)Ta, Pt(8)Ti*, Pt(8)V*, Pt(8)W, Pt(8)Zr*, Rh(8)Mo, Rh(8)W, Ta(8)Pd, Ta(8)Pt, Ta(8)Rh, V(8)Cr(dagger), V(8)Fe(dagger), V(8)Ir(dagger), V(8)Ni(dagger), V(8)Pd, V(8)Pt, V(8)Rh, and V(8)Ru(dagger) ((dagger) = metastable, * = experimentally observed). This is surprising for the wealth of new occurrences that are predicted, especially in well-characterized systems (e.g., Cu-Zn). By verifying all experimental results while offering additional predictions, our study serves as a striking demonstration of the power of the high-throughput approach. The practicality of the method is demonstrated in the Rh-W system. A cluster-expansion-based Monte Carlo model reveals a relatively high order-disorder transition temperature.
Resumo:
The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.
Resumo:
High-resolution synchrotron X-ray diffraction was used to study the phase transformations in titanium alloys. Three titanium alloys were investigated: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-0.08Si and beta21s. Both room and high temperature measurements were performed. The room temperature experiments were performed to study the structure of the alloys after different heat treatments, namely as received (AR), furnace cooling (FC), water quenching (WQ) and water quenching followed by ageing. The alpha, alpha', alpha'' and beta phases were observed in different combinations depending on the heat treatment conditions and the alloy studied. A multicomponent hexagonal close packed (hcp) alpha phase, with different c and the same a lattice parameters, was detected in Ti-6Al-4V after FC. High temperature synchrotron X-ray diffraction was used for 'in situ' study of the transformations on the sample surface at elevated temperatures. The results were used to trace the kinetics of surface oxidation and the concurrent phase transformations taking place under different conditions. The influence of the temperature and oxygen content on the lattice parameters of the alpha phase was derived and new data obtained on the coefficients of thermal expansion in the different directions of the hcp alpha phase, for Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si.
Resumo:
Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.