955 resultados para Ti alloys
Resumo:
Fatigue, corrosion and wear resistance are important parameters in aircraft components development as landing gear. High strength/weight ratio and effective corrosion resistance make of titanium alloys an alternative choice to replace steel and aluminum alloys. However, titanium alloys have poor tribological properties, which reduce devices performance under friction. PVD coatings tribological systems has been increased due to their attractive mechanical properties as low environmental impact, low friction coefficient, low wear rate and hardness up to 2000 HV.In this study the influence of TiN deposited by PVD on the fatigue strength of Ti-6Al-4V alloy was evaluated. Comparison of fatigue strength of coated specimens and base material shows also a decrease when parts are coated. It was observed that the influence is more significant in high cycle fatigue tests. Scanning electron microscopy technique (SEM) was used to observe crack origin sites and fracture features. (C) 2010 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ti-6Al-7Nb alloys are being evaluated for biomedical applications, in substitution of the more conventional Ti-6Al-7V. Both types of alloys present a microstructure containing the alpha and the beta phases, which result in good compromise for mechanical applications. In the present work Ti-6Al-7Nb alloys were processed by High Pressure Torsion (HPT), varying the number of revolutions and thus the total imposed strain. X-Ray Diffraction (XRD) results revealed the formation of different crystallographic textures in samples subjected to HPT. Microhardness distribution, across the diameters of the disks, is rather homogeneous for all samples, with higher values for those subjected to 03 and 05 turns. Transmission electron microscopy (TEM) micrographs have showed that an ultra-fine grained microstructure was obtained in all the samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ba(Zr0.50Ti0.50)O-3 thin films were prepared by the polymeric precursor method using the annealing low temperature of 300 degrees C for 8, 16, 24, 48, 96 and 192 It in a furnace tube with oxygen atmosphere. The X-ray diffraction patterns revealed that the film annealed for 192 h presented some crystallographic planes (1 0 0), (1 1 0) and (2 0 0) in its crystalline lattice. Fourier transformed infrared presented the formation of metal-oxygen stretching at around 756 cm(-1). The atomic force microscopy analysis presented the growth of granules in the Ba(Zr0.50Ti0.50)O-3 films annealed from 8 to 96 h. The crystalline film annealed for 192 h already presents grains in its perovskite structure. It evidenced a reduction in the thickness of the thin films with the increase of the annealing time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium alloys are hoped to be used much more for applications as implant materials in the medical and dental fields because of their basic properties, such as biocompatibility, corrosion resistance and specific strength compared with other metallic implant materials. Thus, the Ti-6Al-7Nb alloy that has recently been developed for biomedical use, that is, primarily developed for orthopaedic use, is to be studied in this paper, for application in dental implants. The biocompatibility test in vivo was carried out in dogs and the osseointegration was verified through histological analysis of the samples of the Ti-6Al-7Nb alloy with and without hydroxyapatite coating that were inserted in the alveoli. Within the controlled conditions the samples did not show any toxic effects on the cells. (C) 2001 Kluwer Academic Publishers.
Resumo:
The purpose of this work was to evaluate the effect of three commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. Experiments were made at 37.0 +/- 0.5 degrees C in a conventional three-compartment double wall glass cell containing commercial mouthwashes. Three mouthwashes with different active ingredients were tested: ( I) 0.05% sodium fluoride + 0.03% triclosan; (II) 0.5 g/l cetylpyridinium chloride + 0.05% sodium fluoride; (III) 0.12% chlorohexidine digluconate. The assessment of the individual effect of active ingredients was studied by using 0.05% sodium fluoride. Commercially pure titanium (CP Ti) was used as control. Microstructures from Ti-10Mo experimental alloy and CP Ti were also evaluated using optical microscopy. Ti-10Mo as-cast alloy shows the typical rapidly cooled dendrites microstructure (beta phase) while CP Ti has exhibited a metastable martensitic microstructure. Electrochemical behavior of dental materials here studied was more affected by mouthwash type than by Ti alloy composition or microstructure. In both alloys passivation phenomenon was observed. This process may be mainly related to Ti oxides or other Ti species present in spontaneously formed film. Small differences in passive current densities values may be connected with changes in film porosity and thickness. Protective characteristics of this passive film are lower in 0.05% sodium fluoride + 0.03% triclosan mouthwash than in the other two mouthwashes tested.