946 resultados para Thermo-electro-mechanical Response
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2016.
Resumo:
The field of medical devices has experienced, more than others, technological advances, developments and innovations, thanks to the rapidly expanding scientific knowledge and collaboration between different disciplines such as biology, engineering and materials science. The design of functional components can be achieved by exploiting composite materials based on nanostructured smart materials, that due to the inherent characteristics of single constituents develop unique properties that make them suitable for different applications preserving excellent mechanical proprieties. For instance, recent developments have focused on the fabrication of piezoelectric devices with multiple biomedical functions, as actuation and sensing functions in one component for monitoring pressure signals. The present Ph.D. Thesis aims at investigating nanostructured smart materials embedded into a polymeric matrix to obtain a composite material that can be used as a functional component for medical devices. (i) Nanostructured piezoelectric material with self-sensing capability was successfully manufactured by using ceramic (i.e. lead zirconate titanate (PZT)) and (ii) polymeric (i.e. poly(vinylidene fluoride-trifluoro ethylene (PVDF-TRFE)) piezoelectric materials. PZT nanofibers were obtained by sol-gel electrospinning starting from synthetized PZT precursor solution. Synthesis, sol-gel electrospinning process, and thermal treatment were accurately controlled to obtain PZT nanofibers dimensionally stable with densely packed grains in the perovskite phase. To guarantee the impact resistance of the laminate, the morphology and size of the hosting filler were accurately designed by increasing the surface area to volume ratio. Moreover, to solve the issue relative to the mechanical discrepancy between rigid electronic materials/soft human tissues/different material of the device (iii) a nanostructured flexible composite material based on a network of Poly-L-lactic acid (PLLA) made of curled nanofibers that present a tuneable mechanical response as a function of the applied stress was successful fabricated.
Resumo:
The ambitious goals of increasing the efficiency, performance and power densities of transportation drives cannot be met with compromises in the motor reliability. For the insulation specialists the challenge will be critical as the use of wide-bandgap converters (WBG, based on SiC and GaN switches) and the higher operating voltages expected for the next generation drives will enhance the electrical stresses to unprecedented levels. It is expected for the DC bus in aircrafts to reach 800 V (split +/-400 V) and beyond, driven by the urban air mobility sector and the need for electrification of electro-mechanical/electro-hydraulic actuators (an essential part of the "More Electric Aircraft" concept). Simultaneously the DC bus in electric vehicles (EV) traction motors is anticipated to increase up to 1200 V very soon. The electrical insulation system is one of the most delicate part of the machine in terms of failure probability. In particular, the appearance of partial discharges (PD) is disruptive on the reliability of the drive, especially under fast repetitive transients. Extensive experimental activity has been performed to extend the body of knowledge on PD inception, endurance under PD activity, and explore and identify new phenomena undermining the reliability. The focus has been concentrated on the impact of the WGB-converter produced waveforms and the environmental conditions typical of the aeronautical sector on insulation models. Particular effort was put in the analysis at the reduced pressures typical of aircraft cruise altitude operation. The results obtained, after a critical discussion, have been used to suggest a coordination between the insulation PD inception voltage with the converter stresses and to propose an improved qualification procedure based on the existing IEC 60034-18-41 standard.
Resumo:
The scope of the thesis is to broaden the knowledge about axially loaded pipe piles, that can play as foundations for offshore wind turbines based on jacket structures. The goal of the work was pursued by interpreting experimental data on large-scale model piles and by developing numerical tools for the prediction of their monotonic response to tensile and compressive loads to failure. The availability of experimental results on large scale model piles produced in two different campaigns at Fraunhofer IWES (Hannover, Germany) represented the reference for the whole work. Data from CPTs, blow counts during installation and load-displacement curves allowed to develop considerations on the experimental results and comparison with empirical methods from literature, such as CPT-based methods and Load Transfer methods. The understanding of soil-structure interaction mechanisms has been involved in the study in order to better assess the mechanical response of the sand with the scope to help in developing predictive tools of the experiments. A lack of information on the response of Rohsand 3152 when in contact with steel was highlighted, so the necessity of better assessing its response was fulfilled with a comprehensive campaign of interface shear test. It was found how the response of the sand to ultimate conditions evolve with the roughness of the steel, which is a precious information to take account of when attempting the prediction of a pile capacity. Parallel to this topic, the work has developed a numerical modelling procedure that was validated on the available large-scale model piles at IWES. The modelling strategy is intended to build a FE model whose mechanical properties of the sand come from an interpretation of commonly available geotechnical tests. The results of the FE model were compared with other predictive tools currently used in the engineering practice.
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
Supplementary information available at: http://www.rsc.org/suppdata/c5/gc/c5gc02231b/c5gc02231b1.pdf
Resumo:
In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.