865 resultados para Theoretical configuration
Resumo:
The specificities of multinational corporations (MNCs) have to date not been a focus area of IS research. Extant literature mostly proposes IS configurations for specific types of MNCs, following a static and prescriptive approach. Our research seeks to explain the dynamics of global IS design. It suggests a new theoretical lens for studying global IS design by applying the structural adjustment paradigm from organizational change theories. Relying on archetype theory, we conduct a longitudinal case study to theorize the dynamics of IS adaptation. We find that global IS design emerges as an organizational adaptation process to balance interpretative schemes (i.e. the organization's values and beliefs) and structural arrangements (i.e. strategic, organizational, and IS configurations). The resulting insights can be used as a basis to further explore alternative global IS designs and movements between them.
Resumo:
The behaviour of the harmonic infrared frequency of diatomic molecules subjected to moderate static uniform electric fields is analysed. The potential energy expression has been developed as a function of a static uniform electric field, which brings about a formulation describing the frequency versus field strength curve. With the help of the first and second derivatives of the expressions obtained, which correspond to the first- and second-order Stark effects, it was possible to find the maxima of the frequency versus field strength curves for a series of molecules using a Newton-Raphson search. A method is proposed which requires only the calculation of a few energy derivatives at a particular value of the field strength. At the same time, the expression for the dependence of the interatomic distance on the electric field strength is derived and the minimum of this curve is found for the same species. Derived expressions and numerical results are discussed and compared with other studi
Resumo:
It is frequently stated that unilateral cricothyroid muscle (CT) paralysis can be diagnosed by physical examination, noting rotation of the glottis, and shortening and vertical displacement of the ipsilateral vocal fold. These signs, however, are inconsistently observed, and there is considerable controversy regarding the direction of glottic rotation. To determine the effects of CT contraction on three-dimensional glottic configuration, we performed computerized tomography on cadaver larynges before and after simulated CT contraction. Radiopaque makers were used to compute distances. Unilateral CT contraction equally increased the length of both membranous vocal folds, and rotated the posterior glottis less than 1 mm. CT contraction neither adducted the vocal processes, nor significantly their altered vertical level. These results suggest that unilateral CT paralysis cannot be diagnosed on the basis of any clinically apparent change in glottal configuration.
Resumo:
The radiation distribution function used by Domínguez and Jou [Phys. Rev. E 51, 158 (1995)] has been recently modified by Domínguez-Cascante and Faraudo [Phys. Rev. E 54, 6933 (1996)]. However, in these studies neither distribution was written in terms of directly measurable quantities. Here a solution to this problem is presented, and we also propose an experiment that may make it possible to determine the distribution function of nonequilibrium radiation experimentally. The results derived do not depend on a specific distribution function for the matter content of the system
Resumo:
Background: Mobile-bearing knee replacements have some theoretical advantages over fixed-bearing devices. However, very few randomized controlled clinical trials have been published to date, and studies showed little clinical and subjective advantages for the mobile-bearing using traditional systems of scoring. The choice of the ideal outcome measure to assess total joint replacement remains a complex issue. However, gait analysis provides objective and quantifying evidences of treatment evaluation. Significant methodological advances are currently made in gait analysis laboratories and ambulatory gait devices are now available. The goal of this study was to provide gait parameters as a new objective method to assess total knee arthroplasty outcome between patients with fixed- and mobile-bearing, using an ambulatory device with minimal sensor configuration. This randomized controlled double-blind study included to date 14 patients: the gait signatures of four patients with mobile-bearing were compared to the gait signatures of nine patients with fixed-bearing pre-operatively and post-operatively at 6 weeks, 3 months and 6 months. Each participant was asked to perform two walking trials of 30m long at his/her preferred speed and to complete a EQ-5D questionnaire, a WOMAC and Knee Society Score (KSS). Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. A new method for a portable system for gait analysis has been developed with very encouraging results regarding the objective outcome of total knee arthroplasty using mobile- and fixed-bearings.
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
A radiative equation of the Cattaneo–Vernotte type is derived from information theory and the radiative transfer equation. The equation thus derived is a radiative analog of the equation that is used for the description of hyperbolic heat conduction. It is shown, without recourse to any phenomenological assumption, that radiative transfer may be included in a natural way in the framework of extendedirreversible thermodynamics
Resumo:
Endovascular coiling is a well-established therapy for treating intracranial aneurysms. Nonetheless, postoperative hemodynamic changes induced by this therapy remain not fully understood. The purpose of this work is to assess the influence of coil configuration and packing density on intra-aneurysmal hemodynamics
Resumo:
Many theoretical dissertations have an unclear definition of diversity and when interpreting strategies of organizational diversity policies, theories often contradict each other. It is argued that this ambiguity and controversy can be diminished by basing theory on diversity and diversity policy more on qualitative structured descriptive empirical comparisons.This argument is elaborated in two steps. First, diversity is shown to be a social construction: dynamic and plural in nature, dependent on the social-historical context. Second, the common theoretical dichotomy between diversity policy as equal opportunities or as diversity management in shown to be possibly misleading; empirical studies indicate more practical differentiation in types of diversity policy, manifested in public and private organizations. As qualitative comparisons are rare, especially in the European context and especially among public organizations, this article calls for more contributions of this kind and provides an analytical framework to assist scholars in the field of diversity studies.
Resumo:
During the last decade, argumentation has attracted growing attention as a means to elicit processes (linguistic, logical, dialogical, psychological, etc.) that can sustain or provoke reasoning and learning. Constituting an important dimension of daily life and of professional activities, argumentation plays a special role in democracies and is at the heart of philosophical reasoning and scientific inquiry. Argumentation, as such, requires specific intellectual and social skills. Hence, argumentation will have an increasing importance in education, both because it is a critical competence that has to be learned, and because argumentation can be used to foster learning in philosophy, history, sciences and in many other domains. Argumentation and Education answers these and other questions by providing both theoretical backgrounds, in psychology, education and theory of argumentation, and concrete examples of experiments and results in school contexts in a range of domains. It reports on existing innovative practices in education settings at various levels.