951 resultados para Textured insole, Standing balance, Aging, Somatosensory, Postural sway
The relationship between forward head posture and cervical muscle performance in healthy individuals
Resumo:
Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.
Resumo:
In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.
Resumo:
Liquid drops impacted on textured surfaces undergo a transition from the Cassie state characterized by the presence of air pockets inside the roughness valleys below the drop to an impaled state with at least one of the roughness valleys filled with drop liquid. This occurs when the drop impact velocity exceeds a particular value referred to as the critical impact velocity. The present study investigates such a transition process during water drop impact on surfaces textured with unidirectional parallel grooves referred to as groove-textured surfaces. The process of liquid impalement into a groove in the vicinity of drop impact through de-pinning of the three-phase contact line (TPCL) beneath the drop as well as the critical impact velocity were identified experimentally from high speed video recordings of water drop impact on six different groove-textured surfaces made from intrinsically hydrophilic (stainless steel) as well as intrinsically hydrophobic (PDMS and rough aluminum) materials. The surface energy of various 2-D configurations of liquid-vapor interface beneath the drop near the drop impact point was theoretically investigated to identify the locally stable configurations and establish a pathway for the liquid impalement process. A force balance analysis performed on the liquid-vapor interface configuration just prior to TPCL de-pinning provided an expression for the critical drop impact velocity, U-o,U-cr, beyond which the drop state transitions from the Cassie to an impaled state. The theoretical model predicts that Uo, cr increases with the increase in pillar side angle, a, and intrinsic hydrophobicity whereas it decreases with the increase in groove top width, w, of the groove-textured surface. The quantitative predictions of the theoretical model were found to show good agreement with the experimental measurements of U-o,U-cr plotted against the surface texture geometry factor in our model, {tan(alpha/2)/w}(0.5).
Resumo:
Lower Extremity Joint Arthroplasty (LEJA) surgery is an effective way to alleviate painful osteoarthritis. Unfortunately, these surgeries do not normalize the loading asymmetry during the single leg stance phase of gait. Therefore, we examined single leg balance in 234 TJA patients (75 hips, 65 knees, 94 ankles) approximately 12 months following surgery. Patients passed if they maintained single leg balance for 10s with their eyes open. Patients one year following total hip arthroplasty (THA-63%) and total knee arthroplasty (TKA-69%) had similar pass rates compared to a total ankle arthroplasty (TAA-9%). Patients following THA and TKA exhibit better unilateral balance in comparison with TAA patients. It may be beneficial to include a rigorous proprioception and balance training program in TAA patients to optimize functional outcomes.
Resumo:
Antecedentes. Pes Adulto planus (pie plano) es un problema común encontrado por muchos profesionales de la salud. A pesar de la percepción de que el pie plano puede causar dolor y deteriorar su función, la disponibilidad y el uso generalizado de diversos tratamientos, no hay consenso sobre la estrategia óptima de tratamiento. Objetivo. Evaluar la efectividad de las intervenciones conservadoras (no quirúrgicos) para pie plano en los adultos. Método. Se realizó una búsqueda sistemática de la literatura. Esto incluye: el Registro Cochrane Central de Ensayos Controlados; los Juicios CMSG Especializados Registro; una búsqueda electrónica se realizó utilizando MEDLINE (1960 a junio de 2012), EMBASE (1980 a junio de 2012), y CINAHL (1982 - junio de 2012). Revistas especializadas, listas de referencias de ensayos y artículos de revisión se realizaron búsquedas manuales. Criterios de selección: Ensayos aleatorios o cuasialeatorios de intervenciones de tratamiento para el pie plano en los adultos. Se excluyeron los ensayos que incluyeron patologías específicas como el dolor plantar del talón, las fracturas por sobrecarga de los metatarsianos, disfunción del tendón tibial posterior-, fracturas de tobillo, patologías del pie reumatoide, enfermedades neuromusculares y las complicaciones del pie diabético. Recopilación y análisis de datos: Dos autores seleccionaron de forma independiente los resultados de la búsqueda para identificar a aquellos que satisfacen los criterios de inclusión y evaluaron la calidad de los incluidos mediante una lista de control basado en la Evaluación de la Colaboración Cochrane de Riesgo. Esta herramienta se centró en el riesgo de la selección, el rendimiento, la detección, la heterogeneidad y el sesgo de notificación. Resultados. Cuatro ensayos, con 140 sujetos, cumplieron los criterios de inclusión para la revisión. Los cuatro fueron juzgados como de alto riesgo de sesgo en al menos un área, y también estaban en riesgo de sesgo incierto en al menos otra zona. Todos anotaron altamente en relación al sesgo de deserción, debido al corto seguimiento tiempos y diseños experimentales utilizados. Los datos no se agruparon debido al alto nivel de heterogeneidad identificada en las intervenciones evaluadas, los participantes seleccionados y medir los resultados. Los resultados de un estudio sugieren que después de cuatro semanas de uso ortesis puede resultar en una mejora significativa en vaivén lateral medio, y pueden resultar en una mejor, aunque no significativa, en general relacionados con la calidad de vida de los pies (Roma 2004). Un estudio (Redmond 2009) sugiere que su efecto sobre la distribución de la presión plantar en el pie puede no depender de si son personalizados o dispositivos prefabricados. Aunque este estudio se identificaron cambios significativos en algunas variables de presión plantar tanto con la costumbre y dispositivos prefabricados, otro (Esterman 2005) no encontró ningún efecto significativo de longitud ¾ ortesis prefabricadas sobre el dolor, la incidencia de lesiones, salud pie o de calidad de vida en un grupo de reclutas de la fuerza aérea. El cuarto estudio (Jung 2009) sugiere que el ejercicio de los músculos intrínsecos del pie puede mejorar el efecto de las ortesis. A pesar de estos resultados, ya que cada estudio incurrió riesgo de sesgo en al menos un área no se pueden sacar conclusiones
Resumo:
Objective: Previous studies with patients diagnosed with Major Depressive Disorder (MDD) revealed deficits in working memory and executive functions. In the present study we investigated whether patients with MDD have the ability to allocate cognitive resources in dual task performance of a highly challenging cognitive task (working memory) and a task that is seemingly automatic in nature (postural control). Method: Fifteen young (18–35 years old) patients with MDD and 24 healthy age-matched controls performed a working memory task and two postural control tasks (standing on a stable or on a moving platform) both separately (single task) and concurrently (dual task). Results: Postural stability under single task conditions was similar in the two groups, and in line with earlier studies, MDD patients recalled fewer working memory items than controls. To equate working memory challenges for patients and controls, task difficulty (number of items presented) in dual task was individually adjusted such that accuracy of working memory performance was similar for the two groups under single task conditions. Patients showed greater postural instability in dual task performance on the stable platform, and more importantly when posture task difficulty increased (moving platform) they showed deficits in both working memory accuracy and postural stability compared with healthy controls. Conclusions: We interpret our results as evidence for executive control deficits in MDD patients that affect their task coordination. In multitasking, these deficits affect not only cognitive but also sensorimotor task performance.
Resumo:
Proprioceptive information from the foot/ankle provides important information regarding body sway for balance control, especially in situations where visual information is degraded or absent. Given known increases in catastrophic injury due to falls with older age, understanding the neural basis of proprioceptive processing for balance control is particularly important for older adults. In the present study, we linked neural activity in response to stimulation of key foot proprioceptors (i.e., muscle spindles) with balance ability across the lifespan. Twenty young and 20 older human adults underwent proprioceptive mapping; foot tendon vibration was compared with vibration of a nearby bone in an fMRI environment to determine regions of the brain that were active in response to muscle spindle stimulation. Several body sway metrics were also calculated for the same participants on an eyes-closed balance task. Based on regression analyses, multiple clusters of voxels were identified showing a significant relationship between muscle spindle stimulation-induced neural activity and maximum center of pressure excursion in the anterior-posterior direction. In this case, increased activation was associated with greater balance performance in parietal, frontal, and insular cortical areas, as well as structures within the basal ganglia. These correlated regions were age- and foot-stimulation side-independent and largely localized to right-sided areas of the brain thought to be involved in monitoring stimulus-driven shifts of attention. These findings support the notion that, beyond fundamental peripheral reflex mechanisms, central processing of proprioceptive signals from the foot is critical for balance control.
Resumo:
In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.
Resumo:
Balance maintenance relies on a complex interplay between many different sensory modalities. Although optimal multisensory processing is thought to decline with ageing, inefficient integration is particularly associated with falls in older adults. We investigated whether improved balance control, following a novel balance training intervention, was associated with more efficient multisensory integration in older adults, particularly those who have fallen in the past. Specifically, 76 healthy and fall-prone older adults were allocated to either a balance training programme conducted over 5 weeks or to a passive control condition. Balance training involved a VR display in which the on-screen position of a target object was controlled by shifts in postural balance on a Wii balance board. Susceptibility to the sound-induced flash illusion, before and after the intervention (or control condition), was used as a measure of multisensory function. Whilst balance and postural control improved for all participants assigned to the Intervention group, improved functional balance was correlated with more efficient multisensory processing in the fall-prone older adults only. Our findings add to growing evidence suggesting important links between balance control and multisensory interactions in the ageing brain and have implications for the development of interventions designed to reduce the risk of falls.
Resumo:
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the cerebral cortex. Support for this cortical role comes from direct measurement associated with moments of induced instability as well as indirect links between cognitive task performance and balance recovery. The cerebral cortex appears to be directly involved in the control of rapid balance reactions but also setting the central nervous system in advance to optimize balance recovery reactions even when a future threat to stability is unexpected. In this review the growing body of evidence that now firmly supports a cortical role in the postural responses to externally induced perturbations is presented. Moreover, an updated framework is advanced to help understand how cortical contributions may influence our resistance to falls and on what timescale. The implications for future studies into the neural control of balance are discussed.
Resumo:
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells.
Resumo:
Older adults use a different muscle strategy to cope with postural instability, in which they ‘co-contract’ the muscles around the ankle joint. It has been suggested that this is a compensatory response to age-related proprioceptive decline however this view has never been assessed directly. The current study investigated the association between proprioceptive acuity and muscle co-contraction in older adults. We compared muscle activity, by recording surface EMG from the bilateral tibalis anterior and gastrocnemius medialis muscles, in young (aged 18-34) and older adults (aged 65-82) during postural assessment on a fixed and sway-referenced surface at age-equivalent levels of sway. We performed correlations between muscle activity and proprioceptive acuity, which was assessed using an active contralateral matching task. Despite successfully inducing similar levels of sway in the two age groups, older adults still showed higher muscle co-contraction. A stepwise regression analysis showed that proprioceptive acuity measured using variable error was the best predictor of muscle co-contraction in older adults. However, despite suggestions from previous research, proprioceptive error and muscle co-contraction were negatively correlated in older adults, suggesting that better proprioceptive acuity predicts more co-contraction. Overall, these results suggest that although muscle co-contraction may be an age-specific strategy used by older adults, it is not to compensate for age-related proprioceptive deficits.
Resumo:
BACKGROUND: Falls and fall-related injuries are symptomatic of an aging population. This study aimed to design, develop, and deliver a novel method of balance training, using an interactive game-based system to promote engagement, with the inclusion of older adults at both high and low risk of experiencing a fall.
STUDY DESIGN: Eighty-two older adults (65 years of age and older) were recruited from sheltered accommodation and local activity groups. Forty volunteers were randomly selected and received 5 weeks of balance game training (5 males, 35 females; mean, 77.18 ± 6.59 years), whereas the remaining control participants recorded levels of physical activity (20 males, 22 females; mean, 76.62 ± 7.28 years). The effect of balance game training was measured on levels of functional balance and balance confidence in individuals with and without quantifiable balance impairments.
RESULTS: Balance game training had a significant effect on levels of functional balance and balance confidence (P < 0.05). This was further demonstrated in participants who were deemed at high risk of falls. The overall pattern of results suggests the training program is effective and suitable for individuals at all levels of ability and may therefore play a role in reducing the risk of falls.
CONCLUSIONS: Commercial hardware can be modified to deliver engaging methods of effective balance assessment and training for the older population.
Resumo:
Enquadramento: O ‘Physiosensing’ (‘PhyS’) é um dispositivo médico destinado ao treino do controlo postural nas posições de sentado e de pé, bem como no levantar e sentar, possibilitando também a avaliação do desempenho a este nível. Este trabalho teve como objetivo avaliar a fiabilidade e a validade da plataforma ‘Physiosensing’ na avaliação do equilíbrio em pessoas com deficiência intelectual (PCDI). Métodos: Para o grupo experimental (GE) foram recrutados 47 indivíduos com deficiência intelectual e para o grupo de controlo (GC) 39 indivíduos sem deficiência intelectual, provenientes da região do BaixoMondego. A avaliação da fiabilidade incluiu as análises da concordância entre observadores, reprodutibilidade temporal e consistência interna. A análise fatorial exploratória analisou os pressupostos de subdomínios propostos pelos autores. A validade discriminante foi analisada através da comparação de resultados entre o GE e o GC, e a validade concorrente pela análise dos valores de associação entre os resultados do ‘PhyS’ com a Escala de Equilíbrio de Berg (EEB). Resultados: O subconjunto de exercícios relacionados com a transferência de peso lateralmente (TPL) apresentou os resultados mais elevados a nível da concordância entre observadores (0,40 ≤ CCI > 0,75) e na reprodutibilidade intemporal (CCI ≥ 0,75). O instrumento apresenta uma consistência interna fraca (α = 0,63) quando considerados todos os exercícios, tendo-se obtido o melhor resultado para o subconjunto de exercícios TPL (α = 0,81). A análise fatorial exploratória devolveu quatro fatores, explicando 76,4% da variância, agrupando no primeiro fator o subconjunto de exercícios TPL. Foram encontradas diferenças estatisticamente significativas entre os resultados dos participantes com e sem deficiência intelectual, em dez dos onze exercícios que compõem a configuração da plataforma. Seis exercícios, que incluem os exercícios TPL, apresentam valores de associação estatisticamente significativos com a EEB. Conclusão: Alguns exercícios da plataforma ‘PhyS’ não se mostram adequados para medir o equilíbrio em PCDI, não podendo ser incluídos numa medida global. No entanto, os exercícios TPL poderão constituir um indicador global do equilíbrio em pessoas com PCDI. Recomenda-se a definição de procedimentos de medição de forma a melhorar os índices de fiabilidade, o aprofundamento da configuração de exercícios para a avaliação do equilíbrio e o estudo do potencial da plataforma em programas de intervenção para o treino das funções do equilíbrio.