957 resultados para Test Set


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modelling to predict levels of PUFA in whole blood, based on MHT and bolasso selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1,607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Amongst other food items, fish, pizza, chicken and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26% to 43% of the variability in PUFA concentrations in the training set and 22% to 33% in the test set. CONCLUSIONS: Selecting food items using MHT is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the analysis of stability of a variant of the Crank-Nicolson (C-N) method for the heat equation on a staggered grid a class of non-symmetric matrices appear that have an interesting property: their eigenvalues are all real and lie within the unit circle. In this note we shall show how this class of matrices is derived from the C-N method and prove that their eigenvalues are inside [-1, 1] for all values of m (the order of the matrix) and all values of a positive parameter a, the stability parameter sigma. As the order of the matrix is general, and the parameter sigma lies on the positive real line this class of matrices turns out to be quite general and could be of interest as a test set for eigenvalue solvers, especially as examples of very large matrices. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migrastatin, a macrolide natural product, and its structurally related analogs are potent inhibitors of cancer cell metastasis, invasion and migration. In the present work, a specialized fragment-based method was employed to develop QSAR models for a series of migrastatin and isomigrastatin analogs. Significant correlation coefficients were obtained (best model, q(2) = 0.76 and r(2) = 0.91) indicating that the QSAR models possess high internal consistency. The best model was then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results (R(2) (pred) = 0.85). The final model and the corresponding contribution maps, combined with molecular modeling studies, provided important insights into the key structural features for the anticancer activity of this family of synthetic compounds based on natural products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis and trypanosomiasis are major causes of morbidity and mortality in both tropical and subtropical regions of the world. The current available drugs are limited, ineffective, and require long treatment regimens. Due to the high dependence of trypanosomatids on glycolysis as a source of energy, some glycolytic enzymes have been identified as attractive targets for drug design. In the present work, classical Two-Dimensional Quantitative Structure -Activity Relationships (2D QSAR) and Hologram QSAR (HQSAR) studies were performed on a series of adenosine derivatives as inhibitors of Leishmania mexicana Glyceraldehyde-3-Phosphate Dehydrogenase (LmGAPDH). Significant correlation coefficients (classical QSAR, r(2)=0.83 and q(2) =0.81; HQSAR, r(2)=0.91 and q(2) =0.86) were obtained for the 56 training set compounds, indicating the potential of the models for untested compounds. The models were then externally validated using a test set of 14 structurally related compounds and the predicted values were in good agreement with the experimental results (classical QSAR, r(pred)(2) = 0.94; HQSAR, r(pred)(2) = 0.92).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glycolytic enzyme glyceraldehyde-3 -phosphate dehydrogenase (GAPDH) is as an attractive target for the development of novel antitrypanosomatid agents. In the present work, comparative molecular field analysis and comparative molecular similarity index analysis were conducted on a large series of selective inhibitors of trypanosomatid GAPDH. Four statistically significant models were obtained (r(2) > 0.90 and q(2) > 0.70), indicating their predictive ability for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results. Molecular modeling studies provided further insight into the structural basis for selective inhibition of trypanosomatid GAPDH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some sesquiterpene lactones (SLs) are the active compounds of a great number of traditionally medicinal plants from the Asteraceae family and possess considerable cytotoxic activity. Several studies in vitro have shown the inhibitory activity against cells derived from human carcinoma of the nasopharynx (KB). Chemical studies showed that the cytotoxic activity is due to the reaction of alpha,beta-unsaturated carbonyl structures of the SLs with thiols, such as cysteine. These studies support the view that SLs inhibit tumour growth by selective alkylation of growth-regulatory biological macromolecules, such as key enzymes, which control cell division, thereby inhibiting a variety of cellular functions, which directs the cells into apoptosis. In this study we investigated a set of 55 different sesquiterpene lactones, represented by 5 skeletons (22 germacranolides, 6 elemanolides, 2 eudesmanolides, 16 guaianolides and nor-derivatives and 9 pseudoguaianolides), in respect to their cytotoxic properties. The experimental results and 3D molecular descriptors were submitted to Kohonen self-organizing map (SOM) to classify (training set) and predict (test set) the cytotoxic activity. From the obtained results, it was concluded that only the geometrical descriptors showed satisfactory values. The Kohonen map obtained after training set using 25 geometrical descriptors shows a very significant match, mainly among the inactive compounds (similar to 84%). Analyzing both groups, the percentage seen is high (83%). The test set shows the highest match, where 89% of the substances had their cytotoxic activity correctly predicted. From these results, important properties for the inhibition potency are discussed for the whole dataset and for subsets of the different structural skeletons. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.