990 resultados para Task constraints
Resumo:
Boards of directors are key governancemechanisms in organizations and fulfill twomain tasks:monitoringmanagers and firm performance, and providing advice and access to resources. In spite of a wealth of researchmuch remains unknown about how boards attend to the two tasks. This study investigates whether organizational (firm profitability) and environmental factors (industry regulation) affect board task performance. The data combine CEOs' responses to a questionnaire, and archival data from a sample of large Italian firms. Findings show that past firm performance is negatively associatedwith board monitoring and advice tasks; greater industry regulation enhances perceived board task performance; board monitoring and advice tasks tend to reinforce each other, despite their theoretical and practical distinction.
Resumo:
The INEX workshop is concerned with evaluating the effectiveness of XML retrieval systems. In 2004 a natural language query task was added to the INEX Ad hoc track. Standard INEX Ad hoc topic titles are specified in NEXI -- a simplified and restricted subset of XPath, with a similar feel, and yet with a distinct IR flavour and interpretation. The syntax of NEXI is rigid and it imposes some limitations on the kind of information need that it can faithfully capture. At INEX 2004 the NLP question to be answered was simple -- is it practical to use a natural language query that is the equivalent of the formal NEXI title? The results of this experiment are reported and some information on the future direction of the NLP task is presented.
Resumo:
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Resumo:
This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.
Resumo:
At NTCIR-10 we participated in the cross-lingual link discovery (CrossLink-2) task. In this paper we describe our systems for discovering cross-lingual links between the Chinese, Japanese, and Korean (CJK) Wikipedia and the English Wikipedia. The evaluation results show that our implementation of the cross-lingual linking method achieved promising results.
Resumo:
Both the United States and Canada have federal legislation that attempts to address employment inequities across specific target groups. The US has a long tradition of affirmative action, dating back to President Kennedy’s 1961 Executive Order; Canada enacted its Employment Equity Act in 1986. Employment Equity/Affirmative Action policy has attracted significant controversy, with high profile court cases and the repeal of state/provincial legislation. Coate and Loury (1993) examine the theoretical impact of introducing affirmative action. Unfortunately the theoretical impact of affirmative action is ambiguous. The current paper employs a laboratory experiment to shed empirical light on this theoretical ambiguity.
Resumo:
This paper details the participation of the Australian e- Health Research Centre (AEHRC) in the ShARe/CLEF 2013 eHealth Evaluation Lab { Task 3. This task aims to evaluate the use of information retrieval (IR) systems to aid consumers (e.g. patients and their relatives) in seeking health advice on the Web. Our submissions to the ShARe/CLEF challenge are based on language models generated from the web corpus provided by the organisers. Our baseline system is a standard Dirichlet smoothed language model. We enhance the baseline by identifying and correcting spelling mistakes in queries, as well as expanding acronyms using AEHRC's Medtex medical text analysis platform. We then consider the readability and the authoritativeness of web pages to further enhance the quality of the document ranking. Measures of readability are integrated in the language models used for retrieval via prior probabilities. Prior probabilities are also used to encode authoritativeness information derived from a list of top-100 consumer health websites. Empirical results show that correcting spelling mistakes and expanding acronyms found in queries signi cantly improves the e ectiveness of the language model baseline. Readability priors seem to increase retrieval e ectiveness for graded relevance at early ranks (nDCG@5, but not precision), but no improvements are found at later ranks and when considering binary relevance. The authoritativeness prior does not appear to provide retrieval gains over the baseline: this is likely to be because of the small overlap between websites in the corpus and those in the top-100 consumer-health websites we acquired.
Resumo:
The Australian e-Health Research Centre (AEHRC) recently participated in the ShARe/CLEF eHealth Evaluation Lab Task 1. The goal of this task is to individuate mentions of disorders in free-text electronic health records and map disorders to SNOMED CT concepts in the UMLS metathesaurus. This paper details our participation to this ShARe/CLEF task. Our approaches are based on using the clinical natural language processing tool Metamap and Conditional Random Fields (CRF) to individuate mentions of disorders and then to map those to SNOMED CT concepts. Empirical results obtained on the 2013 ShARe/CLEF task highlight that our instance of Metamap (after ltering irrelevant semantic types), although achieving a high level of precision, is only able to identify a small amount of disorders (about 21% to 28%) from free-text health records. On the other hand, the addition of the CRF models allows for a much higher recall (57% to 79%) of disorders from free-text, without sensible detriment in precision. When evaluating the accuracy of the mapping of disorders to SNOMED CT concepts in the UMLS, we observe that the mapping obtained by our ltered instance of Metamap delivers state-of-the-art e ectiveness if only spans individuated by our system are considered (`relaxed' accuracy).
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
This thesis examines the role of social enterprises in regional development and is based on comparative case studies of two regions in NSW. With a specific focus on 10 social enterprises, including both Indigenous and non-Indigenous organisations, 63 interviews were conducted with a wide range of community stakeholders. Utilising a decolonising methodological approach, the study examined the social and financial needs of these organisations, as well as their contributions as regional development actors.
Resumo:
Identifying outstanding performers or ‘stars’ is a critical component of managing talent. However, organizational effectiveness in this area is limited by the current lack of guidance about the behaviour and characteristics of stars. We address this gap by combining a conceptual analysis with an empirical study involving 174 managers. Conceptually we examine the alignment of managers’ perceptions of outstanding performance with the well established task and contextual performance model and find this framework accounts for a core element in managers’ judgments about outstanding performers. However, a second, more qualitative approach finds that other dimensions including being self-directed, and a willingness to lead are also important. Our findings are consistent with a long-term trend toward identifying work effectiveness with highly discretionary, psychological and behavioural elements, and we consider the implications of this for the study and management of high level, individual effectiveness.
Resumo:
Non-rigid face alignment is a very important task in a large range of applications but the existing tracking based non-rigid face alignment methods are either inaccurate or requiring person-specific model. This dissertation has developed simultaneous alignment algorithms that overcome these constraints and provide alignment with high accuracy, efficiency, robustness to varying image condition, and requirement of only generic model.