982 resultados para TROPHOBLAST GIANT CELLS
Resumo:
Though benign, giant cell tumor of bone (GCTB) can become aggressive and can exhibit a high mitotic rate, necrosis and rarely vascular invasion and metastasis. GCTB has unique histologic characteristics, a high rate of multinucleated cells, a variable and unpredictable growth potential and uncertain biological behavior. In this study, we sought to identify genes differentially expressed in GCTB, thus building a molecular profile of this tumor. We performed quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry and analyses of methylation to identify genes that are putatively associated with GCTB. The expression of the ADAM23 and CDKN2A genes was decreased in GCTB samples compared to normal bone tissue, measured by qPCR. Additionally, a high hypermethylation frequency of the promoter regions of ADAM23 and CDKN2A in GCTB was observed. The expression of the MAP2K3, MMP14, TIMP2 and VIM genes was significantly higher in GCTB than in normal bone tissue, a fact that was confirmed by qPCR and immunohistochemistry. The set of genes identified here furthers our understanding of the molecular basis of GCTB.
Resumo:
Problem In this study, we explored the relationship between decidual cells (DC) and interferon (IFN)-gamma, in the presence or absence of ectoplacental cone (EC) using a coculture system. Method of study Decidual cells and EC were isolated from pregnant mice on gestation day 7.5. DCs were cultured for 48 hr and then treated with fresh EC. After characterization, they were treated with IFN-gamma, and cell death was evaluated. Results Interferon-gamma drastically increased decidual apoptosis, which was partially reverted by the addition of EC to the IFN-gamma-treated decidual culture. Moreover, the addition of EC to non-treated DC cultures was also capable of attenuating death rates. Conclusion Resistance to apoptosis may be induced in DC by the EC. This suggests that EC may participate in the inhibition of IFN-gamma-dependent apoptosis and, therefore, play important role for DC survival in a cytokineenriched placental environment.
Resumo:
Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation.
Resumo:
Signal transducers and activators of transcription 3 (STAT3) has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop) were fixed in methacarn and processed with immunoperoxidase techniques for detection of STAT3 and its phosphorylation at serine (p-ser727) residues, as well as the suppressor of cytokine signaling 3 (SOCS3) expression. STAT3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, STAT3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for STAT3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, SOCS3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of STAT3, its serine activation and SOCS3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice.
Resumo:
Angiomyolipomas (AMLs) are mesenchymal neoplasms, named so because of the complex tissue composition represented by variable proportions of mature adipose tissue, smooth muscle cells, and dysmorphic blood vessels. Although AMLs may rise in different sites of the body, they are mostly observed in the kidney and liver. In the case of renal AMLs, they are described in two types: isolated AMLs and AMLs associated with tuberous sclerosis (TS). While most cases of AMLs are found incidentally during imaging examinations and are asymptomatic, others may reach huge proportions causing symptoms. Pulmonary lymphangioleiomyomatosis (LAM) is a rare benign disease characterized by cystic changes in the pulmonary parenchyma and smooth muscle proliferation, leading to a mixed picture of interstitial and obstructive disease. AML and LAM constitute major features of tuberous sclerosis complex (TSC), a multisystem autosomal dominant tumor-suppressor gene complex diagnosis. The authors report the case of a young female patient who presented a huge abdominal tumor, which at computed tomography (CT) show a fat predominance. The tumor displaced the right kidney and remaining abdominal viscera to the left. Chest CT also disclosed pulmonary lesions compatible with lymphangioleiomyomatosis. Because of sudden abdominal pain accompanied by a fall in the hemoglobin level, the patient underwent an urgent laparotomy. The excised tumor was shown to be a giant renal AML with signs of bleeding in its interior. The authors call attention to the diagnosis of AML and the huge proportions that the tumor can reach, as well as for ruling out the TSC diagnosis, once it may impose genetic counseling implications.
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
The present thesis introduces a novel sensitive technique based on TSM resonators that provides quantitative information about the dynamic properties of biological cells and artificial lipid systems. In order to support and complement results obtained by this method supplementary measurements based on ECIS technique were carried out. The first part (chapters 3 and 4) deals with artificial lipid systems. In chapter 3 ECIS measurements were used to monitor the adsorption of giant unilamellar vesicles as well as their thermal fluctuations. From dynamic Monte Carlo Simulations the rate constant of vesicle adsorption was determined. Furthermore, analysis of fluctuation measurements reveals Brownian motion reflecting membrane undulations of the adherent liposomes. In chapter 4 QCM-based fluctuation measurements were applied to quantify nanoscopically small deformations of giant unilamellar vesicles with an external electrical field applied simultaneously. The response of liposomes to an external voltage with shape changes was monitored as a function of cholesterol content and adhesion force. In the second part (chapters 5 - 8) attention was given to cell motility. It was shown for the first time, that QCM can be applied to monitor the dynamics of living adherent cells in real time. QCM turned out to be a highly sensitive tool to detect the vertical motility of adherent cells with a time resolution in the millisecond regime. The response of cells to environmental changes such as temperature or osmotic stress could be quantified. Furthermore, the impact of cytochalasin D (inhibits actin polymerization) and taxol (facilitate polymerization of microtubules) as well as nocodazole (depolymerizes microtubules) on the dynamic properties of cells was scrutinized. Each drug provoked a significant reduction of the monitored cell shape fluctuations as expected from their biochemical potential. However, not only the abolition of fluctuations was observed but also an increase of motility due to integrin-induced transmembrane signals. These signals were activated by peptides containing the RGD sequence, which is known to be an integrin recognition motif. Ultimately, two pancreatic carcinoma cell lines, derived from the same original tumor, but known to possess different metastatic potential were studied. Different dynamic behavior of the two cell lines was observed which was attributed to cell-cell as well as cell-substrate interactions rather than motility. Thus one may envision that it might be possible to characterize the motility of different cell types as a function of many variables by this new highly sensitive technique based on TSM resonators. Finally the origin of the broad cell resonance was investigated. Improvement of the time resolution reveals the "real" frequency of cell shape fluctuations. Several broad resonances around 3-5 Hz, 15-17 Hz and 25-29 Hz were observed and that could unequivocally be assigned to biological activity of living cells. However, the kind of biological process that provokes this synchronized collective and periodic behavior of the cells remains to be elucidated.
Resumo:
The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.
Resumo:
The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.
Resumo:
MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.
Resumo:
Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous) uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.
Resumo:
Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.
Resumo:
The Notch signaling pathway plays a central role in metazoan growth and patterning, and its deregulation leads to many human diseases, including cancer. It is therefore important to understand the modes of Notch signaling regulation. Recent discoveries have demonstrated that mutations in conserved endosomal pathway components such as Erupted and Vps25 can ectopically activate Notch signaling in Drosophila. Mutations in the tumor suppressor lethal giant discs (lgd) display similar but even stronger and more specific Notch activation than in the erupted and vps25 mutant animals. This Notch activation in lgd mutant tissues causes hyperplastic overgrowth of the Drosophila imaginal discs, and the eventual lethality of the animal. However, the gene that encodes Lgd, and its function in the Notch pathway have not yet been identified. ^ I have found that Lgd is a novel, conserved C2 domain protein that regulates Notch trafficking. Lgd cell-autonomously restricts Notch signaling in the Drosophila wing disc to the target cells in the D/V boundary. The function of Lgd lies at or upstream of Notch S3 activation, but Lgd doesn't affect the binding affinities between Notch and Delta. Lgd is also not required for cis-inhibition of Notch signaling by ligands. Notch accumulates on the early endosome in lgd mutant cells and signals in a ligand-independent manner, a result that has previously been seen in endosomal pathway mutants. Interestingly, Notch activation in lgd mutant cells is dependent on the endosomal protein Hrs, and Lgd activity appears to be downstream of Hrs function in endocytosis. Taken together, my data identify Lgd as a novel tumor suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling. ^
Resumo:
The present investigation was targeted at diatom composition studies in the surface sediments (0-1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80-100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3-60.0 mln per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.
Resumo:
The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.