925 resultados para TNF-aplha
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Blockade of cytokines, particularly of tumour necrosis factor alpha (TNF-alpha), in immuno-inflammatory diseases, has led to the greatest advances in medicine of recent years. We did a thorough review of the literature with a focus on inflammation models in rodents on modified gene expression or bioactivity for IL-1, IL-6, and TNF-alpha, and we summarized the results of randomized controlled clinical trials in human disease. What we have learned herewith is that important information can be achieved by the use of animal models in complex, immune-mediated diseases. However, a clear ranking for putative therapeutic targets appears difficult to obtain from an experimental approach alone. This is primarily due to the fact that none of the disease models has proven to cover more than one crucial pathogenetic aspect of the complex cascade of events leading to characteristic clinical disease signs and symptoms. This supports the notion that the addressed human immune-mediated diseases are polygenic and the summation of genetic, perhaps epigenetic, and environmental factors. Nevertheless, it has become apparent, so far, that TNF-alpha is of crucial importance in the development of antigen-dependent and antigen-independent models of inflammation, and that these results correlate well with clinical success. With some delay, clinical trials in conditions having some relationship with rheumatoid arthritis (RA) indicate new opportunities for blocking IL-1 or IL-6 therapeutically. It appears, therefore, that a translational approach with critical, mutual reflection of simultaneously performed experiments and clinical trials is important for rapid identification of new targets and development of novel treatment options in complex, immune-mediated, inflammatory diseases.
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.
Resumo:
OBJECTIVES: An optimized, longitudinal in vivo magnetic resonance vessel wall-imaging protocol was evaluated regarding its capability of detecting differences in the time-dependent atherosclerotic lesion progression in the aortic arch between ApoE(-/-) and double-deficient ApoE(-/-)/TNF(-/-) mice at comparatively early plaque development stages. MATERIALS AND METHODS: Seven ApoE(-/-) and seven ApoE(-/-)/TNF(-/-) female mice underwent MRI at 11.75 teslas at four stages up to 26 weeks of age. A double-gated spin-echo MRI sequence was used with careful perpendicular slice positioning to visualize the vessel wall of the ascending aortic arch. RESULTS: Wall-thickness progression measured with MRI was significant at 11 weeks of age in ApoE(-/-) mice, but only at 26 weeks in ApoE(-/-)/TNF(-/-) mice. A significant correlation was found between MRI wall-thickness and lesion area determined on histology. CONCLUSION: MRI was shown to be sensitive enough to reveal subtle genetically-induced differences in lesion progression at ages earlier than 25 weeks.
Resumo:
BACKGROUND: Single-nucleotide polymorphisms in genes involved in lipoprotein and adipocyte metabolism may explain why dyslipidemia and lipoatrophy occur in some but not all antiretroviral therapy (ART)-treated individuals. METHODS: We evaluated the contribution of APOC3 -482C-->T, -455T-->C, and 3238C-->G; epsilon 2 and epsilon 4 alleles of APOE; and TNF -238G-->A to dyslipidemia and lipoatrophy by longitudinally modeling >2600 lipid determinations and 2328 lipoatrophy assessments in 329 ART-treated patients during a median follow-up period of 3.4 years. RESULTS: In human immunodeficiency virus (HIV)-infected individuals, the effects of variant alleles of APOE on plasma cholesterol and triglyceride levels and of APOC3 on plasma triglyceride levels were comparable to those reported in the general population. However, when treated with ritonavir, individuals with unfavorable genotypes of APOC3 and [corrected] APOE were at risk of extreme hypertriglyceridemia. They had median plasma triglyceride levels of 7.33 mmol/L, compared with 3.08 mmol/L in the absence of ART. The net effect of the APOE*APOC3*ritonavir interaction was an increase in plasma triglyceride levels of 2.23 mmol/L. No association between TNF -238G-->A and lipoatrophy was observed. CONCLUSIONS: Variant alleles of APOE and APOC3 contribute to an unfavorable lipid profile in patients with HIV. Interactions between genotypes and ART can lead to severe hyperlipidemia. Genetic analysis may identify patients at high risk for severe ritonavir-associated hypertriglyceridemia.
Resumo:
Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited "exudate" macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2-deficient (CCR2(-/-)) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism.
Resumo:
TNF is an essential player in infections with Leishmania major, contributing to the control of the inflammatory lesion and, to a lesser degree, to parasite killing. However, the relative contribution of the soluble and transmembrane forms of TNF in these processes is unknown. To investigate the role of transmembrane TNF (mTNF) in the control of L. major infections, mTNF-knock-in (mTNF(Delta/Delta)) mice, which express functional mTNF but do not release soluble TNF, were infected with L. major, and the development of the inflammatory lesion and the immune response was compared to that occurring in L. major-infected TNF(-/-) and wild-type mice. mTNF(Delta/Delta) mice controlled the infection and resolved their inflammatory lesion as well as wild-type mice, a process associated with the early clearance of neutrophils at the site of parasite infection. In contrast, L. major-infected TNF(-/-) mice developed non-healing lesions, characterized by an elevated presence of neutrophils at the site of infection and partial control of parasite number within the lesions. Altogether, the results presented here demonstrate that mTNF, in absence of soluble TNF, is sufficient to control infection due to L. major, enabling the regulation of inflammation, and the optimal killing of Leishmania parasites at the site of infection.
Resumo:
TNFalpha (TNF) critically regulates inflammation-driven atherosclerosis. Because the transmembrane (tmTNF) and soluble (sTNF) forms of TNF possess distinct immuno-modulatory properties, we hypothesized that they might differentially regulate atherosclerosis progression. Three groups of male ApoE(-/-) mice were studied: one expressing wild-type TNF (WT-TNF); one expressing exclusively a mutated non-cleavable form of TNF (KI-TNF); and one deficient in TNF (KO-TNF). Mice aged 5 weeks were fed the high-fat diet for 5 (T5) and 15 weeks (T15) or a standard chow diet for 15 weeks. At T5, in mice fed the high-fat diet, no significant differences in lesion area were observed among the three groups, either in valves or in aortas. At T15, lesion areas in valves were significantly lower in KO-TNF mice compared with those in WT-TNF mice, whereas in KI-TNF mice, they were intermediate between KO- and WT-TNF mice but not significantly different from these two groups. In aortas, lesions in KI-TNF were comparable to those of KO-TNF, both being significantly lower than those in WT-TNF. Theses differences were not linked to circulating lipids, or to macrophage, actin, and collagen contents of lesions. At T15, in mice fed the chow diet, lesion areas in valves and the aortic arch were not significantly different between the three groups. Levels of IL-6, IFNgamma, IL-10, and Foxp3 mRNAs in spleens and production of IL-6, IL-10, MCP-1, RANTES, and TNFR-2 by peritoneal macrophages at T15 of the high-fat diet showed a decrease in pro-inflammatory status, more marked in KO-TNF than in KI-TNF mice. Apoptosis was reduced only in KO-TNF mice. In conclusion, these data show that TNF effects on atherosclerosis development are detectable at stages succeeding fatty streaks and that wild-type TNF is superior to tmTNF alone in promoting atherosclerosis. TNF-dependent progression of atherosclerosis is probably linked to the differential production of pro-inflammatory mediators whether tmTNF is preponderant or essentially cleaved. Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley ; Sons, Ltd.
Resumo:
In addition to its proinflammatory effects, TNF-alpha exhibits immunosuppression. Here, we compared the capacities of transmembrane TNF-alpha (tmTNF) and soluble TNF-alpha (sTNF) in regulating expansion of activated T cells by apoptosis. Splenic CD4(+) T cells from wtTNF, TNF-alpha-deficient (TNF(-/-)) and TNF(-/-) mice expressing a non-cleavable mutant tmTNF showed comparable proliferation rates upon TCR-mediated stimulation. Activation-induced cell death (AICD), however, was significantly attenuated in tmTNF and TNF(-/-), compared with wtTNF CD4(+) T cells. Addition of sTNF during initial priming was sufficient to enhance susceptibility to AICD in tmTNF and TNF(-/-) CD4(+) T cells to levels seen in wtTNF CD4(+) T cells, whereas addition of sTNF only during restimulation failed to enhance AICD. sTNF-induced, enhanced susceptibility to AICD was dependent on both TNF receptors. The reduced susceptibility of tmTNF CD4(+) T cells for AICD was also evident in an in vivo model of adoptively transferred CD4(+) T-cell-mediated colonic inflammation. Hence, the presence of sTNF during T-cell priming may represent an important mechanism to sensitize activated T cells for apoptosis, thereby attenuating the extent and duration of T-cell reactivities and subsequent T-cell-mediated, excessive inflammation.
Resumo:
Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.