954 resultados para TI-TA ALLOYS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was developed for the determination of trace and ultratrace amounts of REE. Cd. In. Tl. Th. Nb, Ta. Zr and Hf in soils and sediments. With NaOH-Na2O2 as the flux. Ti(OH)(4)-Fe(OH)(3) co-precipitation as the preconcentration technique and inductively coupled plasma mass spectrometry (ICP-MS) for measurement, the whole procedure was concise and suitable for batch analysis of multi-element solutions. An investigation was carried out of the Ti(OH)(4)-Fe(OH)(3) co-precipitation system, and the results obtained showed that the natural situation of Ti tightly coexisting with Nb. Ta, Zr and Hf in geological samples plays a very important role in the complete co-precipitation of the four elements. The accuracy of this procedure was established using six Chinese soil and sediment certified reference materials (GSS and GSD). and the relative errors between the found and certified values were mostly below 10%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti and Ti alloys can be applied to steels as a protective coating in view of its excellent resistance to corrosive environment. Cold spraying, as a new coating technique, has potential advantages in fabrication of Ti coating in comparison with conventional thermal spraying techniques. In this study, Ti coatings were prepared on carbon steel substrates by cold spraying via controlling the process conditions. The microstructure of coatings was observed by SEM. The porosity of coatings was estimated by image analysis and the bond strength was tested for comparison of the process conditions. Potentiodynamic polarization and open-circuit potential (OCP) measurements were performed to understand the corrosion behavior of the coatings. The SEM examination shows that the coatings become more compact with the increases of pressure and temperature of driving gas. The potentiodynamic polarization curves indicate that the coating which has lower porosity has lower corrosion current. The polarization and OCP measurement reveal that cold-sprayed Ti coating can provide favorable protection to carbon steel substrate. The polishing treatment of coating surface polishes the rough outer layer including the small pores as well as decreases the actual surface area of the coating, leading to the considerable improvement of corrosion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binary A(8)B phase (prototype Pt(8)Ti) has been experimentally observed in 11 systems. A high-throughput search over all the binary transition intermetallics, however, reveals 59 occurrences of the A(8)B phase: Au(8)Zn(dagger), Cd(8)Sc(dagger), Cu(8)Ni(dagger), Cu(8)Zn(dagger), Hg(8)La, Ir(8)Os(dagger), Ir(8)Re, Ir(8)Ru(dagger), Ir(8)Tc, Ir(8)W(dagger), Nb(8)Os(dagger), Nb(8)Rh(dagger), Nb(8)Ru(dagger), Nb(8)Ta(dagger), Ni(8)Fe, Ni(8)Mo(dagger)*, Ni(8)Nb(dagger)*, Ni(8)Ta*, Ni(8)V*, Ni(8)W, Pd(8)Al(dagger), Pd(8)Fe, Pd(8)Hf, Pd(8)Mn, Pd(8)Mo*, Pd(8)Nb, Pd(8)Sc, Pd(8)Ta, Pd(8)Ti, Pd(8)V*, Pd(8)W*, Pd(8)Zn, Pd(8)Zr, Pt(8)Al(dagger), Pt(8)Cr*, Pt(8)Hf, Pt(8)Mn, Pt(8)Mo, Pt(8)Nb, Pt(8)Rh(dagger), Pt(8)Sc, Pt(8)Ta, Pt(8)Ti*, Pt(8)V*, Pt(8)W, Pt(8)Zr*, Rh(8)Mo, Rh(8)W, Ta(8)Pd, Ta(8)Pt, Ta(8)Rh, V(8)Cr(dagger), V(8)Fe(dagger), V(8)Ir(dagger), V(8)Ni(dagger), V(8)Pd, V(8)Pt, V(8)Rh, and V(8)Ru(dagger) ((dagger) = metastable, * = experimentally observed). This is surprising for the wealth of new occurrences that are predicted, especially in well-characterized systems (e.g., Cu-Zn). By verifying all experimental results while offering additional predictions, our study serves as a striking demonstration of the power of the high-throughput approach. The practicality of the method is demonstrated in the Rh-W system. A cluster-expansion-based Monte Carlo model reveals a relatively high order-disorder transition temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution synchrotron X-ray diffraction was used to study the phase transformations in titanium alloys. Three titanium alloys were investigated: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-0.08Si and beta21s. Both room and high temperature measurements were performed. The room temperature experiments were performed to study the structure of the alloys after different heat treatments, namely as received (AR), furnace cooling (FC), water quenching (WQ) and water quenching followed by ageing. The alpha, alpha', alpha'' and beta phases were observed in different combinations depending on the heat treatment conditions and the alloy studied. A multicomponent hexagonal close packed (hcp) alpha phase, with different c and the same a lattice parameters, was detected in Ti-6Al-4V after FC. High temperature synchrotron X-ray diffraction was used for 'in situ' study of the transformations on the sample surface at elevated temperatures. The results were used to trace the kinetics of surface oxidation and the concurrent phase transformations taking place under different conditions. The influence of the temperature and oxygen content on the lattice parameters of the alpha phase was derived and new data obtained on the coefficients of thermal expansion in the different directions of the hcp alpha phase, for Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4 V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4 V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os estudos de maquinabilidade de biomateriais e outros materiais aplicados na área médica são extensos. Todavia, muitos destes estudos recorrem a modelos de geometria regular e operações elementares de maquinagem. Relativamente a estas, os estudos académicos atualmente disponíveis mostram que a tecnologia preferencial é o torneamento, opção que se fundamenta na simplicidade de análise (corte ortogonal). Saliente-se ainda que, neste contexto, a liga de titânio Ti-6Al-4V constitui o biomaterial mais utilizado. Numa perspetiva complementar, refira-se que as publicações científicas evidenciam que a informação disponível sobre a fresagem Ti-6Al-4V não é muito extensa e a do Co-28Cr-6Mo é quase inexistente. A presente dissertação enquadra-se neste domínio e representa mais uma contribuição para o estudo da maquinabilidade das ligas de Titânio e de crómio-cobalto. A aplicação de operações de maquinagem complexas, através do recurso a programas informáticos de fabrico assistido por computador (CAM), em geometrias complexas, como é o caso das próteses femorais anatómicas, e o estudo comparativo da maquinabilidade das ligas Co-28Cr-6Mo e Ti-6Al-4V, constituem os objetivos fundamentais deste trabalho de doutoramento. Neste trabalho aborda-se a problemática da maquinabilidade das ligas metálicas usadas nos implantes ortopédicos, nomeadamente as ligas de titânio, de crómiocobalto e os aços Inoxidáveis. Efetua-se ainda um estudo da maquinagem de uma prótese femoral com uma forma geométrica complexa, onde as operações de corte foram geradas recorrendo às tecnologias de fabrico assistido por computador (CAD/CAM). Posteriormente, procedeu-se ao estudo da maquinabilidade das duas ligas usadas neste trabalho, dando uma atenção particular à determinação das forças de corte para diferentes velocidades de corte. Para além da monitorização da evolução da força de corte, o desgaste das ferramentas, a dureza e a rugosidade foram avaliadas, em função da velocidade de corte imposta. Por fim, com base nas estratégias de maquinagem adotadas, analisa-se a maquinabilidade e selecionam-se os parâmetros de corte mais favoráveis para as ligas de Titânio e Crómio-cobalto. Os resultados obtidos mostram que a liga de crómio-cobalto induz maior valor de força de corte do que a liga de titânio. Observa-se um aumento progressivo das forças de corte quando a velocidade de corte aumenta, até atingir o valor máximo para a velocidade de corte de 80m/min, após a qual, a força de corte tende a diminuir. Apesar do fabricante das ferramentas recomendar a velocidade de corte de 50 m/min para ambos os materiais, conclui-se que a velocidade de corte de 65 m/min induz o mesmo desgaste na ferramenta de corte no caso da liga de titânio, e menor desgaste no caso da liga de crómio-cobalto.