995 resultados para THREE-PARTY
Resumo:
Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%–84%) reductions were achieved at half load operation (1% increase–43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.
Inhibitory GH receptor extracellular domain monoclonal antibodies: Three-dimensional epitope mapping
Resumo:
Being an academic in universities today is characterised by change and increasing complexity in response to a multitude of factors impacting on the university sector. Among the consequences of such changes are that many academics, and academic leaders in particular, are subjected to both increasing stress and scrutiny in many of the decisions they make. Some of these decisions require critical choices that involve contestation of values (including personal, professional, institutional, and community), resulting in ethical dilemmas for the decisionmakers. This article reports on an exploratory study into ethical dilemmas faced by middle-level academic leaders, drawing on the results of an on-line survey distributed to relevant academics in three universities in Australia. Here, middle-level academic leaders are defined as those holding course coordination roles, locating them between senior university staff and other academics on the one hand, and students on the other hand. As a consequence, these diverse groups of staff and students potentially have an array of conflicting interests in, and expectations on, middle-level academics’ decision-making processes. The findings of the study are clear: ethical dilemmas are evident, and commonly so, for many middle-level academic leaders. While exploratory in nature, the findings of this study suggest that much more attention to ethics and ethical dilemmas is needed in our universities.
Resumo:
A number of groups around the world are working in the field of three dimensional(3D) ultrasound (US) in order to obtain higher quality diagnostic information. 3D US, in general, involves collecting a sequence of conventional 2D US images along with information on the position and orientation of each image plane. A transformation matrix is calculated relating image space to real world space. This allows image pixels and region of interest (ROI) points drawn on the image to be displayed in 3D. The 3D data can be used for the production of volume or surface rendered images, or for the direct calculation of ROI volumes.
Resumo:
Australian housing underwent a watershed when 1960s mass-produced houses slowly started subscribing to a new aesthetic of continuous living spaces, known as the ‘open plan’ home. This created a new landscape for Australian playwrights to observe and explore in their work when representing domesticity on the stage. Instead of representing a single room of the house on the stage, plays such as ‘Don’s Party’, started to work with a number of openly connected spaces bound by doorways to private sections of the house or to specific outdoor areas. In representing this dialectic between interior and the exterior, private and public spaces in the home, the continuous spaces of the AV Jennings house in ‘Don’s Party’ acted to blur these conditions creating an outer interior. These connected spaces became the place for an outward performance on the family’s interiority, while simultaneously presenting a boundary to an inner interior in the offstage spaces of the home. This paper focuses on the play 'Don's Party' by David Williamson and how the spatial arrangements of the AV Jennings home, in which it was set, influenced the playwright. The research includes a textual analysis of the play, biographical research and interviews with the playwright alongside an analysis of the spatial arrangements of AV Jennings houses.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.