1000 resultados para THERMOTROPIC BEHAVIOR
Resumo:
This paper presents a numerical study of the response of axially loaded concrete filled steel tube (CFST) columns under lateral impact loading using explicit non-linear finite element techniques. The aims of this paper are to evaluate the vulnerability of existing columns to credible impact events as well as to contribute new information towards the safe design of such vulnerable columns. The model incorporates concrete confinement, strain rate effects of steel and concrete, contact between the steel tube and concrete and dynamic relaxation for pre-loading, which is a relatively recent method for applying a pre-loading in the explicit solver. The finite element model was first verified by comparing results with existing experimental results and then employed to conduct a parametric sensitivity analysis. The effects of various structural and load parameters on the impact response of the CFST column were evaluated to identify the key controlling factors. Overall, the major parameters which influence the impact response of the column are the steel tube thickness to diameter ratio, the slenderness ratio and the impact velocity. The findings of this study will enhance the current state of knowledge in this area and can serve as a benchmark reference for future analysis and design of CFST columns under lateral impact.
Resumo:
Objective We examined whether exposure to a greater number of fruits, vegetables, and noncore foods (ie, nutrient poor and high in saturated fats, added sugars, or added salt) at age 14 months was related to children’s preference for and intake of these foods as well as maternal-reported food fussiness and measured child weight status at age 3.7 years. Methods This study reports secondary analyses of longitudinal data from mothers and children (n=340) participating in the NOURISH randomized controlled trial. Exposure was quantified as the number of food items (n=55) tried by a child from specified lists at age 14 months. At age 3.7 years, food preferences, intake patterns, and fussiness (also at age 14 months) were assessed using maternal-completed, established questionnaires. Child weight and length/height were measured by study staff at both age points. Multivariable linear regression models were tested to predict food preferences, intake patterns, fussy eating, and body mass index z score at age 3.7 years adjusting for a range of maternal and child covariates. Results Having tried a greater number of vegetables, fruits, and noncore foods at age 14 months predicted corresponding preferences and higher intakes at age 3.7 years but did not predict child body mass index z score. Adjusting for fussiness at age 14 months, having tried more vegetables at age 14 months was associated with lower fussiness at age 3.7 years. Conclusions These prospective analyses support the hypothesis that early taste and texture experiences influence subsequent food preferences and acceptance. These findings indicate introduction to a variety of fruits and vegetables and limited noncore food exposure from an early age are important strategies to improve later diet quality.
Resumo:
Due to the existing of many prestressed members in the structural system, the interdependent behavior of all prestressed members is the main concern in the analysis of the pretension process. A thorough investigation of this mutual effect is essential for an effective, reliable, and optimal analysis. Focus on this aspect, this paper presents an investigation of the interdependent behavior of all prestressed members in the whole structural system based on influence matrix (IFM). Four different types of IFM are introduced. Two different solving methods are brought forth to analyze the pretension process. The direct solving method solves for the accurate solution, whereas the iterative solving method repeatedly amends to achieve an approximate solution. A numerical example is then conducted. The result shows that various kinds of complicated batched and repeated tensioning schemes can be analyzed reliably, effectively, and completely based on IFM.
Resumo:
To The ratcheting behavior of high-strength rail steel (Australian Standard AS1085.1) is studied in this work for the purpose of predicting wear and damage to the rail surface. Historically, researchers have used circular test coupons obtained from the rail head to conduct cyclic load tests, but according to hardness profile data, considerable variation exists across the rail head section. For example, the induction-hardened rail (AS1085.1) shows high hardness (400-430 HV100) up to four-millimeters into the rail head’s surface, but then drops considerably beyond that. Given that cyclic test coupons five millimeters in diameter at the gauge area are usually taken from the rail sample, there is a high probability that the original surface properties of the rail do not apply across the entire test coupon and, therefore, data representing only average material properties are obtained. In the literature, disks (47 mm in diameter) for a twin-disk rolling contact test machine have been obtained directly from the rail sample and used to validate rolling contact fatigue wear models. The question arises: How accurate are such predictions? In this research paper, the effect of rail sampling position on the ratcheting behavior of AS1085.1 rail steel was investigated using rectangular shaped specimens. Uniaxial stress-controlled tests were conducted with samples obtained at four different depths to observe the ratcheting behaviour of each. Micro-hardness measurements of the test coupons were carried out to obtain a constitutive relationship to predict the effect of depth on the ratcheting behaviour of the rail material. This work ultimately assists the selection of valid material parameters for constitutive models in the study of rail surface ratcheting.
Resumo:
Purpose: Physical activity improves the health outcomes of colorectal cancer (CRC) survivors, yet few are exercising at levels known to yield health benefits. Baseline demographic, clinical, behavioral, and psychosocial predictors of physical activity at 12 months were investigated in CRC survivors. Methods: Participants were CRC survivors (n = 410) who completed a 12-month multiple health behavior change intervention trial (CanChange). The outcome variable was 12 month sufficient physical activity (≥150 min of moderate–vigorous physical activity/week). Baseline predictors included demographics and clinical variables, health behaviors, and psychosocial variables. Results: Multivariate linear regression revealed that baseline sufficient physical activity (p < 0.001), unemployment (p = 0.004), private health insurance (p = 0.040), higher cancer-specific quality of life (p = 0.031) and higher post-traumatic growth (p = 0.008) were independent predictors of sufficient physical activity at 12 months. The model explained 28.6 % of the variance. Conclusions: Assessment of demographics, health behaviors, and psychosocial functioning following a diagnosis of CRC may help to develop effective physical activity programs.
Resumo:
We examined parenting behaviors, and their association with concurrent and later child behavior problems. Children with an intellectual disability (ID) were identified from a UK birth cohort (N = 516 at age 5). Compared to parents of children without an ID, parents of children with an ID used discipline less frequently, but reported a more negative relationship with their child. Among children with an ID, discipline, and home atmosphere had no long-term association with behavior problems, whereas relationship quality did: closer relationships were associated with fewer concurrent and later child behavior problems. Increased parent-child conflict was associated with greater concurrent and later behavior problems. Parenting programs in ID could target parent-child relationship quality as a potential mediator of behavioral improvements in children.
Resumo:
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.
Resumo:
BACKGROUND Sedentary behavior may independently contribute to morbidity and mortality among survivors of colorectal cancer. In the current study, the authors assessed whether a telephone-delivered multiple health behavior change intervention had an effect on the sedentary behavior of recently diagnosed colorectal cancer survivors. METHODS A total of 410 participants were recruited through the Queensland Cancer Registry and randomized to the health coaching (intervention) or usual-care (control) group. Eleven health coaching sessions addressing multiple health behaviors, including sedentary behavior, were delivered over a period of 6 months. Data were collected at baseline (before randomization), at 6 months, and at 12 months via a telephone interview. RESULTS At 12 months, there was a significant decrease noted in the hours per day of sedentary time in both the health coaching (−1.21; 95% confidence interval [95% CI], −1.71 to −0.70) and usual-care groups (−0.55; 95% CI, −1.06 to −0.05), but the between-group difference was not found to be statistically significant (−0.65; 95% CI, −1.37 to 0.06 [P = .07]). In stratified subgroup analyses, the multiple health behavior change intervention was found to have a significant effect on total sedentary time (hours/day) at 12 months in survivors of colorectal cancer who were aged > 60 years (−0.90; 95% CI, −1.80 to −0.01 [P = .05]), male (−1.33; 95% CI, −2.44 to −0.21 [P = .02]), and nonobese (−1.10; 95% CI, −1.96 to −0.25; [P = .01]). CONCLUSIONS Incorporating simple messages about limiting sedentary behaviors into a multiple health behavior change intervention was found to have modest effects on sedentary behavior. A sedentary behavior-specific intervention strategy may be required to achieve substantial changes in sedentary behavior among colorectal cancer survivors
Resumo:
Background Multiple health behavior change can ameliorate adverse effects of cancer. Purpose The purpose of this study was to determine the effects of a multiple health behavior change intervention (CanChange) for colorectal cancer survivors on psychosocial outcomes and quality of life. Methods A total of 410 colorectal cancer survivors were randomized to a 6-month telephone-based health coaching intervention (11 sessions using acceptance and commitment therapy strategies focusing on physical activity, weight management, diet, alcohol, and smoking) or usual care. Posttraumatic growth, spirituality, acceptance, mindfulness, distress, and quality of life were assessed at baseline, 6 and 12 months. Results Significant intervention effects were observed for posttraumatic growth at 6 (7.5, p < 0.001) and 12 months (4.1, p = 0.033), spirituality at 6 months (1.8, p = 0.011), acceptance at 6 months (0.2, p = 0.005), and quality of life at 6 (0.8, p = 0.049) and 12 months (0.9, p = 0.037). Conclusions The intervention improved psychosocial outcomes and quality of life (physical well-being) at 6 months with most effects still present at 12 months. (Trial Registration Number: ACTRN12608000399392).
Resumo:
Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.
Resumo:
Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.
Resumo:
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a largeradius conical indenter is also proposed.
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The behavior of simetryn and thiobencarb in flooded rice soil was investigated in a 2-year study. The concentrations of simetryn and thiobencarb were in the hundreds of μg kg-1 in the top soil layer (0-5 cm) and became significantly lower in tens of μg kg-1 in the deeper soil layers (5-10 and 10-15 cm). The half-lives of the two herbicides were also shorter (36 and 17 days for simetryn and thiobencarb, respectively) in the top soil layer, as they were most affected by environmental conditions, compared with corresponding values of 82 and 69 days in the 5-10 cm soil layer. Simetryn concentration was stable, while thiobencarb's half-life was 165 days in the 10-15 cm layer. About 35% of the applied mass of simetryn and thiobencarb were found in the rice soil compartment.
Resumo:
The behavior of sprayed tricyclazole in rice paddy lysimeters was studied. Tricyclazole residues were measured from rice leaves and paddy water after tricyclazole spraying in paddy lysimeters. The rate of photolysis and hydrolysis of tricyclazole on the surface of rice leaves was also determined in a laboratory experiment. Tricyclazole was extracted from leaf and water samples and determined by liquid chromatography with UV or mass spectrometry. The hydrolysis half-lives of tricyclazole on rice leaves were 11.9 and 5.1 d for the formulated product and standard, respectively. The photolysis half-lives were longer, 16.4 d for the formulated product and 20.9 d for the standard. In the paddy lysimeter, tricyclazole dissipation on leaves involved either biphasic first-order kinetics or single-phase first-order kinetics, depending on the rainfall pattern. Half-lives of tricyclazole on lysimeter rice leaves were from 3.0 to 5.7 d. The dissipation of tricyclazole in paddy water followed single-phase first-order kinetics with half-lives ranging from 2.1 to 5.0 d.