972 resultados para T-cell receptor (TCR) repertoire
Resumo:
CD8+ and CD8− T cell lines expressing the same antigen-specific receptor [the 2C T cell receptor (TCR)] were compared for ability to bind soluble peptide-MHC and to lyse target cells. The 2C TCR on CD8− cells bound a syngeneic MHC (Kb+)-peptide complex 10–100 times less well than the same TCR on CD8+ cells, and the CD8− 2C cells lysed target cells presenting this complex very poorly. Surprisingly, however, the CD8− cells differed little from CD8+ cells in ability to bind an allogeneic MHC (Ld+)-peptide complex and to lyse target cells presenting this complex. The CD8+/CD8− difference provided an opportunity to estimate how long TCR engagements with peptide-MHC have to persist to initiate the cytolytic T cell response.
Resumo:
Factors that affect naïve T cell proliferation in syngeneic lymphopenic hosts were investigated. 2C T cell receptor (TCR) transgenic T cells lacking both CD8 and CD4 survived but hardly proliferated. Proliferation of CD8+ 2C cells was proportional to the abundance of cognate peptide/MHC complexes and was severely inhibited by injection of anti-CD8 antibody. Weakly reactive self-peptides slightly enhanced CD8+ 2C cell proliferation whereas a potent agonist peptide promoted much more rapid proliferation, but inflammation-stimulating adjuvant had only a small effect on the rate of cell proliferation. The findings suggest that under uniform lymphopenic conditions, the widely different rates of proliferation of T cells expressing various TCR, or the same TCR in the presence or absence of CD8, reflect the strength of interaction between TCR and MHC associated with particular self-peptides.
Resumo:
The assembly of a pre-B cell receptor (pre-BCR) composed of an Ig μ heavy chain (μH-chain), the surrogate light (SL) chain, and the Igα/β dimer is critical for late pro-B cells to advance to the pre-B cell stage. By using a transgenic mouse model, in which μH-chain synthesis is solely driven by a tetracycline-controlled transactivator, we show that de novo synthesis of μH-chain in transgenic pro-B cells not only induces differentiation but also proliferation. This positive effect of μH-chain synthesis on proliferation requires the presence of SL chain and costimulatory signals provided by stromal cells or IL-7. We conclude that pre-BCR signaling induces clonal expansion of early pre-B cells.
Resumo:
Two of the most important models to account for the specificity and sensitivity of the T cell receptor (TCR) are the kinetic proofreading and serial ligation models. However, although kinetic proofreading provides a means for individual TCRs to measure accurately the length of time they are engaged and signal appropriately, the stochastic nature of ligand dissociation means the kinetic proofreading model implies that at high concentrations the response of the cell will be relatively nonspecific. Recent ligand experiments have revealed the phenomenon of both negative and positive crosstalk among neighboring TCRs. By using a Monte Carlo simulation of a lattice of TCRs, we integrate receptor crosstalk with the kinetic proofreading and serial ligation models and discover that receptor cooperativity can enhance T cell specificity significantly at a very modest cost to the sensitivity of the response.
Resumo:
T cell receptor (TCR) allelic exclusion is believed to be primarily mediated by suppression of further recombination at the TCR locus after the expression of a functional TCR protein. Genetic allelic exclusion has been shown to be leaky for the β chain and, more commonly, for the α chain. Here, we demonstrate an additional mechanism by which T cells can maintain monoclonality. T cells from double TCR transgenic mice express only one or the other of the two available TCRs at the cell surface. This “functional allelic exclusion” is apparently due to control of the TCR assembly process because these T cells express RNA and protein for all four transgenic TCR proteins. Lack of cell surface expression of the second TCR may be controlled by a failure to assemble the TCR heterodimer.
Resumo:
The H-2Ld alloreactive 2C T cell receptor (TCR) is commonly considered as being positively selected on the H-2Kb molecule. Surprisingly, 2C TCR+ CD8+ single-positive T cells emerge in massive numbers in fetal thymic organ culture originating from 2C transgenic, H-2KbDb−/− (2C+KbDb−/−) but not in fetal thymic organ culture from β2-microglobulin−/− 2C transgenic animals. Mature CD8+ T cells are observed in newborn but not in adult 2C+KbDb−/− mice. These CD8+ T cells express the α4β7 integrin, which allows them to populate the intestine, a pattern of migration visualized by intrathymic injection of FITC and subsequent accrual of FITC-labeled lymphocytes in the gut. We conclude that the 2C TCR is reactive not only with H-2Ld and H-2Kb, but also with nonclassical MHC class I products to enable positive selection of 2C+ T cells in the fetal and newborn thymus and to support their maintenance in the intestine.
Resumo:
Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.
Resumo:
Small changes in the complex between a peptide and a molecule of the major histocompatibility complex generate ligands able to partially activate (partial agonist) or even inhibit (antagonist) T-cell functions. T-cell receptor engagement of antagonist complex results in a partial zeta chain phosphorylation without activation of the associated ZAP-70 kinase. Herein we show that, despite a strong inhibition of both inositol phospholipid hydrolysis and extracellular increasing antagonist concentrations increased the activity of the CD4-Lck kinase. Addition of anti-CD4 antibody to culture medium prevented inhibitory effects induced by antagonist ligand. We propose that CD4-Lck activation triggered by antagonist complexes may act in a dominant negative mode, thus overriding stimulatory signals coming from agonist ligand. These findings identify a new T-cell signaling profile that may explain the ability of some T-cell receptor variant ligands to inhibit specific biological activities or trigger alternative activation programs.
Resumo:
To assess the role of transcriptional enhancers in regulating accessibility of the T-cell receptor beta-chain (TCRbeta) locus, we generated embryonic stem cell lines in which a single allelic copy of the endogenous TCRbeta enhancer (Ebeta) was either deleted or replaced with the immunoglobulin heavy-chain intronic enhancer. We assayed the effects of these mutations on activation of the TCRbeta locus in normal T- and B-lineage cells by RAG-2 (recombination-activating gene 2)-deficient blastocyst complementation. We found that Ebeta is required for rearrangement and germ-line transcription of the TCRbeta locus in T-lineage cells. In the absence of Ebeta, the heavy-chain intronic enhancer partially supported joining region beta-chain rearrangement in T- but not in B-lineage cells. However, ability of the heavy-chain intronic enhancer to induce rearrangements was blocked by linkage to an expressed neomycin-resistance gene (neo(r)). These results demonstrate a critical role for Ebeta in promoting accessibility of the TCRbeta locus and suggest that additional negative elements may cooperate to further modulate this process.
Resumo:
In this study, we describe the interaction between cytokine and cytokine receptor (R) for the activation and proliferation of gamma delta T-cell receptor-positive T cells (gamma delta T cells). gamma delta T cells isolated from murine intestinal intraepithelial lymphocytes (IELs) were separated into gamma delta (Dim) and gamma delta (Bright) fractions according to the intensity of gamma delta T-cell receptor expression. The gamma delta T cells express low levels of IL-2R and IL-7R as shown by flow cytometry and reverse transcriptase-PCR analysis, whereas gamma delta (Bright) T cells did not express either receptor. Our study also revealed that recombinant marine (rm)IL-2 and rmIL-7 reciprocally induced high expressions of IL-7R and IL-2R, respectively, on gamma delta (Dim) T cells but not on gamma delta (Bright) cells. Thus, treatment of gamma delta (Dim) T cells with rmIL-2 and rmIL-7 resulted in high proliferative responses, whereas gamma delta (Bright) T cells did not respond to these two cytokines. The sources of these two cytokines for gamma delta T cells were neighboring epithelial cells (IL-7) and alpha beta T cells (IL-2 and IL-7). Cytokine signaling by IL-2 and IL-7 from alpha beta T cells and epithelial cells was necessary for the expression of IL-7R and IL-2R, respectively, on a subset of gamma delta T cells (e.g., gamma delta (Dim) T cells) in mucosa-associated tissue for subsequent activation and cell division.
Resumo:
She is a widely expressed adapter protein that plays an important role in signaling via a variety of cell surface receptors and has been implicated in coupling the stimulation of growth factor, cytokine, and antigen receptors to the Ras signaling pathway. She interacts with several tyrosine-phosphorylated receptors through its C-terminal SH2 domain, and one of the mechanisms of T-cell receptor-mediated Ras activation involves the interaction of the Shc SH2 domain with the tyrosine-phosphorylated zeta chain of the T-cell receptor. Here we describe a high-resolution NMR structure of the Shc SH2 domain complexed to a phosphopeptide (GHDGLpYQGLSTATK) corresponding to a portion of the zeta chain of the T-cell receptor. Although the overall architecture of the protein is similar to other SH2 domains, distinct structural differences were observed in the smaller beta-sheet, BG loop, (pY + 3) phosphopeptide-binding site, and relative position of the bound phosphopeptide.
Resumo:
Like other cell-surface receptors with intrinsic or associated protein-tyrosine kinase activity, the T-cell receptor complex undergoes a number of modifications, including tyrosine phosphorylation steps, after ligand binding but before transmitting a signal. The requirement for these modifications introduces a temporal lag between ligand binding and receptor signaling. A model for the T-cell receptor is proposed in which this feature greatly enhances the receptor's ability to discriminate between a foreign antigen and self-antigens with only moderately lower affinity. The proposed scheme is a form of kinetic proofreading, known to be essential for the fidelity of protein and DNA synthesis. A variant of this scheme is also described in which a requirement for formation of large aggregates may lead to a further enhancement of the specificity of T-cell activation. Through these mechanisms, ligands of different affinity potentially may elicit qualitatively different signals.
Resumo:
The B-cell receptor CD22 binds sialic acid linked alpha-2-6 to terminal galactose residues on N-linked oligosaccharides associated with several cell-surface glycoproteins. The first of these sialoglycoproteins to be identified was the receptor-linked phosphotyrosine phosphatase CD45, which is required for antigen/CD3-induced T-cell activation. In the present work, we examine the effect of interaction between the extracellular domain of CD45 and CD22 on T-cell activation. Using soluble CD22-immunoglobulin fusion proteins and T cells expressing wild-type and chimeric CD45 forms, we show that engagement of CD45 by soluble CD22 can modulate early T-cell signals in antigen receptor/CD3-mediated stimulation. We also show that addition of sialic acid by beta-galactoside alpha-2,6-sialyltransferase to the CD22 molecule abrogates interactions between CD22 and its ligands. Together, these observations provide direct evidence for a functional role of the interaction between the extracellular domain of CD45 and a natural ligand and suggest another regulatory mechanism for CD22-mediated ligand engagement.