979 resultados para T helper 1 immune response
Resumo:
Genetic background of the T cell can influence T helper (Th) phenotype development, with some murine strains (e.g., B10.D2) favoring Th1 development and others (e.g., BALB/c) favoring Th2 development. Recently we found that B10.D2 exhibit an intrinsically greater capacity to maintain interleukin 12 (IL-12) responsiveness under neutral conditions in vitro compared with BALB/c T cells, allowing for prolonged capacity to undergo IL-12-induced Th1 development. To begin identification of the loci controlling this genetic effect, we used a T-cell antigen receptor-transgenic system for in vitro analysis of intercrosses between BALB/c and B10.D2 mice and have identified a locus on murine chromosome 11 that controls the maintenance of IL-12 responsiveness, and therefore the subsequent Th1/Th2 response. This chromosomal region is syntenic with a locus on human chromosome 5q31.1 shown to be associated with elevated serum IgE levels, suggesting that genetic control of Th1/Th2 differentiation in mouse, and of atopy development in humans, may be expressed through similar mechanisms.
Resumo:
BACKGROUND: This study was aimed at evaluating the clinical protection, the level of Porcine circovirus type 2 (PCV2) viremia and the immune response (antibodies and IFN-γ secreting cells (SC)) in piglets derived from PCV2 vaccinated sows and themselves vaccinated against PCV2 at different age, namely at 4, 6 and 8 weeks. The cohort study has been carried out over three subsequent production cycles (replicates). At the start/enrolment, 46 gilts were considered at first mating, bled and vaccinated. At the first, second and third farrowing, dams were bled and re-vaccinated at the subsequent mating after weaning piglets. Overall 400 piglets at each farrowing (first, second and third) were randomly allocated in three different groups (100 piglets/group) based on the timing of vaccination (4, 6 or 8 weeks of age). A fourth group was kept non-vaccinated (controls). Piglets were vaccinated intramuscularly with one dose (2 mL) of a commercial PCV2a-based subunit vaccine (Porcilis® PCV). Twenty animals per group were bled at weaning and from vaccination to slaughter every 4 weeks for the detection of PCV2 viremia, humoral and cell-mediated immune responses. Clinical signs and individual treatments (morbidity), mortality, and body weight of all piglets were recorded. RESULTS: All vaccination schemes (4, 6 and 8 weeks of age) were able to induce an antibody response and IFN-γ SC. The highest clinical and virological protection sustained by immune reactivity was observed in pigs vaccinated at 6 weeks of age. Overall, repeated PCV2 vaccination in sows at mating and the subsequent higher levels of maternally derived antibodies did not significantly interfere with the induction of both humoral and cell-mediated immunity in their piglets after vaccination. CONCLUSIONS: The combination of vaccination in sows at mating and in piglets at 6 weeks of age was more effective for controlling PCV2 natural infection, than other vaccination schemas, thus sustaining that some interference of MDA with the induction of an efficient immune response could be considered. In conclusion, optimal vaccination strategy needs to balance the levels of passive immunity, the management practices and timing of infection.
Resumo:
Metastatic melanoma is poorly responsive to treatment, and immunotherapeutic approaches are potentially beneficial. Predictors of clinical response are needed to identify suitable patients. We sought factors associated with melanoma-specific clinical response following intradermal vaccination with autologous melanoma peptide and particulate hepatitis B antigen (HBsAg)-exposed immature monocyte-derived dendritic cells (MDDC). Nineteen patients with metastatic melanoma received a maximum of 8, 2-weekly vaccinations of DC, exposed to HBsAg in addition to autologous melanoma peptides. A further 3 patients received an otherwise identical vaccine that did not include HBsAg. Patients were assessed 1-2 monthly for safety, disease volume, and cellular responses to HBsAg and melanoma peptide. There was no significant toxicity. Of 19 patients receiving HBsAg-exposed DC, 9 primed or boosted a cellular response to HBsAg, and 10 showed no HBsAg response. HBsAg-specific responses were associated with in vitro T cell responses to melanoma peptides and to phytohemagglutinin (PHA). Zero out of 10 non-HBsAg-responding and 4/9 HBsAg-responding patients achieved objective melanoma-specific clinical responses or disease stabilization- 1 complete and 2 partial responses and I case of stable disease (P=0.018). Development of melanoma-specific cellular immunity and T cell responsiveness to mitogen were greater in the group of patients responding to HBsAg. Therefore stimulation of an immune response to nominal particulate antigen was necessary when presented by melanoma peptide-exposed immature DC, to achieve clinical responses in metastatic melanoma. Since general immune competence may be a determinant of treatment response, it should be assessed in future trials on DC immunotherapy.
Resumo:
Objective: To study the effect of Echinacea tablets on the expression of leucocyte heat shock protein 70 (hsp70), erythrocyte haemolysis, plasma antioxidant status, serum chemistry, haematological values and plasma alkylamide concentrations. Method: Eleven healthy individuals (26-61 years of age) were evaluated at baseline (day 1) and on day 15 after consuming two commercially blended Echinacea tablets daily for 14 days. Results: Echinacea supplementation enhanced the fold increase in leucocyte hsp70 expression after a mild heat shock (P=0.029). White cell counts (WCC) were also increased (P=0.043). We also observed a preventative effect against free radical induced erythrocyte haemolysis (P=0.006) indicative of an antioxidant effect. Conclusion: The pilot study suggests that Echinacea may invoke an immune response through altered expression of hsp70 and increased WCC.
Resumo:
The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-? cytokine production from splenocytes and higher IL-1ß at the site of injection.
Resumo:
Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. Unfortunately, these vaccines are weakly or non-immunogenic in the absence of an immunological adjuvant (agents that can induce strong immunity to antigens). In addition, in order to prevent and/or control infection at the mucosal surface, stimulation of the mucosal immune system is essential. This may be achieved via the common mucosal immune system by exposure to antigen at a mucosal surface remote from the area of infection. Initial studies investigated the potential of multiple emulsions in effecting oral absorption and the subsequent immune responses to a lipopolysaccharide vaccine (LPS) after immunisation. Nasal delivery of LPS was carried out in parallel work using either aqueous solution or gel formulations. Tetanus toxoid vaccine in simple solution was delivered to guinea pigs as free antigen or entrapped in DSPC liposomes. In addition, adsorbed tetanus toxoid vaccine was delivered nasally free or in an aerosil gel formulation. This work was extended to investigate guinea pigs immunised by various mucosal routes with a herpes simplex virus subunit vaccine prepared from virus infected cells and delivered in gels, multiple emulsions and liposomes. Comparable serum antibody responses resulted but failed to produce enhanced protection against vaginal challenge when compared to subcutaneous immunisation with alhydrogel adjuvanted vaccine. Thus, immunisation of the mucosal surface by these methods may have been inadequate. These studies were extended in an attempt to protect against HSV genital challenge by construction of an attenuated Salmonella typhimurium HWSH aroA mutant expressing a cloned glycoprotein D-l gene fused to the Es-cherichia coli lac z promoter. Preliminary work on the colonisation of guinea pigs with S. typhimurium HWSH aroA mutants were carried out, with the aim of using the guinea pig HSV vaginal model to investigate protection.
Resumo:
Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.
Resumo:
Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1β that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.
Resumo:
Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.
Resumo:
In mono-infected individuals, the HLA-B27 allele is strongly associated with spontaneous clearance of HCV in association with a strong CD8+ response targeted against a single epitope within the HCV RNA-dependent RNA polymerase (NS5B). We studied variation across the whole HCV genome and T cell responses over time in a rare cohort of HLA-B27+ patients with acute HCV and HIV co-infection, the majority of whom progressed to chronicity. We used next generation sequencing to detect changes within and outwith the immuno-dominant HLA-B27 restricted HCV-specific CD8+ T cell epitope NS5B2841-2849 (ARMILMTHF) during evolving progression of early HCV infection. Within the Acute HCV UK cohort, 10 patients carried the HLA B27 allele. Of these, 3/8 patients (37.5%) with HIV infection and 2/2 (100%) without HIV spontaneously cleared HCV (p=0.44). Sequential samples from nine HLA-B27+ patients (2 with monoinfection and 7 with HIV co-infection) were available for analysis (four spontaneous clearers and five evolving progressors). Mutations identified using NGS were assessed using a replicon genotype 1a system to evaluate viral fitness. Multiple mutations within the HLA-B27 restricted NS5B2841-2849 epitope were associated with progression to chroncity whereas patients who cleared the HCV infection spontaneously had no or only one mutation at this site (p=0.03). A triple NS5B2841-2849 mutant observed during progression to chronicity was associated with restored replication when compared to wild-type virus while single or double mutants were significantly associated with impaired replication (p=0.0495). T cell responses measured in these patients using ELISpot and flow cytometry. HLA-B27+ patients had significantly higher IFN-γ responses than patients who were HLA-B27- (p=0.0014). Those who progressed to chronicity had lower IFN-γ responses than those who cleared HCV (p=0.0011). Mono-infected patients had higher IFN-γ responses compared to co-infected patients (p=0.0015). HIV co-infection is associated with a lower likelihood of spontaneous clearance of HCV in HLA B27+ patients and this is associated with impaired T cell function in this group.
Resumo:
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy.
Resumo:
Nitric oxide (NO) is a free radical synthesized from L-arginine by different isoforms NO-synthases. NO possesses multiple and complex biological functions. NO is an important mediator of homeostasis, and changes in its generation or actions can contribute or not to pathological states. The knowledge of effects of NO has been not only important to our understanding of immune response, but also to new tools for research and treatment of various diseases. Knowing the importance of NO as inflammatory mediator in diverse infectious diseases, we decided to develop a revision that shows the participation/effect of this mediator in immune response induced against Giardia spp. Several studies already demonstrated the participation of NO with microbicidal and microbiostatic activity in giardiasis. On the other hand, some works report that Giardia spp. inhibit NO production by consuming the intermediate metabolite arginine. In fact, studies in vitro showed that G. lamblia infection of human intestinal epithelial cells had reduced NO production. This occurs due to limited offer of the crucial substrate arginine (essential aminoacid for NO production), consequently reducing NO production. Therefore, the balance between giardial arginine consumption and epithelial NO production could contribute to the variability of the duration and severity of infections by this ubiquitous parasite.
Resumo:
Background: The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives: This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods: Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 mu g of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 mu g of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results: Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 mu g per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions: The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.