958 resultados para Symbolism in medicine.
Resumo:
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification.
Resumo:
Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.
Resumo:
Current limitations of coronary magnetic resonance angiography (MRA) include a suboptimal signal-to-noise ratio (SNR), which limits spatial resolution and the ability to visualize distal and branch vessel coronary segments. Improved SNR is expected at higher field strengths, which may provide improved spatial resolution. However, a number of potential adverse effects on image quality have been reported at higher field strengths. The limited availability of high-field systems equipped with cardiac-specific hardware and software has previously precluded successful in vivo human high-field coronary MRA data acquisition. In the present study we investigated the feasibility of human coronary MRA at 3.0 T in vivo. The first results obtained in nine healthy adult subjects are presented.
Resumo:
In three-dimensional (3D) coronary magnetic resonance angiography (MRA), the in-flow contrast between the coronary blood and the surrounding myocardium is attenuated as compared to thin-slab two-dimensional (2D) techniques. The application of a gadolinium (Gd)-based intravascular contrast agent may provide an additional source of signal and contrast by reducing T(1blood) and supporting the visualization of more distal or branching segments of the coronary arterial tree. In six healthy adults, the left coronary artery (LCA) system was imaged pre- and postcontrast with a 0.075-mmol/kg bodyweight dose of the intravascular contrast agent B-22956. For imaging, an optimized free-breathing, navigator-gated and -corrected 3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast enhancement was acquired. The combination of IR 3D coronary MRA, sophisticated navigator technology, and B-22956 allowed for an extensive visualization of the LCA system. Postcontrast, a significant increase in both the signal-to-noise ratio (SNR; 46%, P < 0.05) and contrast-to-noise ratio (CNR; 160%, P < 0.01) was observed, while vessel sharpness of the left anterior descending (LAD) artery and the left coronary circumflex (LCX) were improved by 20% (P < 0.05) and 18% (P < 0.05), respectively.
Resumo:
Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
One of the traditional tasks of district and hospital managers has been to attempt to explain variations in average length of stay, average cost per day and average cost per case, between different hospitals. The need for such explanations has become more acute as a result of the recent emphasis on 'performance indicators' as measures of the efficiency of hospitals. The task of explaining these differences has not been rendered easier by the lack of appropriate management information for this purpose.
Resumo:
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Resumo:
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Resumo:
A cardiac-triggered, free-breathing, 3D balanced FFE projection renal MR angiography (MRA) technique with a 2D pencil beam aortic labeling pulse for selective aortic spin tagging was developed. For respiratory motion artifact suppression during free breathing, a prospective real-time navigator was implemented for renal MRA. Images obtained with the new approach were compared with standard contrast-enhanced (CE) 3D breath-hold MRA in seven swine. Signal properties and vessel visualization were analyzed. With the presented technique, high-resolution, high-contrast renal projection MRA with superior vessel length visualization (including a greater visible number of distal branches of the renal arteries) compared to standard breath-hold CE-MRA was obtained. The present results warrant clinical studies in patients with renal artery disease.
Resumo:
The susceptibility of blood changes after administration of a paramagnetic contrast agent that shortens T(1). Concomitantly, the resonance frequency of the blood vessels shifts in a geometry-dependent way. This frequency change may be exploited for incremental contrast generation by applying a frequency-selective saturation prepulse prior to the imaging sequence. The dual origin of vascular enhancement depending first on off-resonance and second on T(1) lowering was investigated in vitro, together with the geometry dependence of the signal at 3T. First results obtained in an in vivo rabbit model are presented.
Resumo:
We propose to evaluate automatic three-dimensional gray-value rigid registration (RR) methods for prostate localization on cone-beam computed tomography (CBCT) scans. In total, 103 CBCT scans of 9 prostate patients have been analyzed. Each one was registered to the planning CT scan using different methods: (a) global RR, (b) pelvis bone structure RR, (c) bone RR refined by local soft-tissue RR using the CT clinical target volume (CTV) expanded with a 1, 3, 5, 8, 10, 12, 15 or 20-mm margin. To evaluate results, a radiation oncologist was asked to manually delineate the CTV on the CBCT scans. The Dice coefficients between each automatic CBCT segmentation - derived from the transformation of the manual CT segmentation - and the manual CBCT segmentation were calculated. Global or bone CT/CBCT RR has been shown to yield insufficient results in average. Local RR with an 8-mm margin around the CTV after bone RR was found to be the best candidate for systematically significantly improving prostate localization.
Resumo:
ABSTRACT: While diagnosis has traditionally been viewed as an essential concept in medicine, particularly when selecting treatments, we suggest that the use of diagnosis alone may be limited, particularly within mental health. The concept of clinical case formulation advocates for collaboratively working with patients to identify idiosyncratic aspects of their presentation and select interventions on this basis. Identifying individualized contributing factors, and how these could influence the person's presentation, in addition to attending to personal strengths, may allow the clinician a deeper understanding of a patient, result in a more personalized treatment approach, and potentially provide a better clinical outcome.