966 resultados para Swash zone sediment transport


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extreme runup is a key parameter for a shore risk analysis in which the accurate and quantitative estimation of the upper limit reached by waves is essential. Runup can be better approximated by splitting the setup and swash semi-amplitude contributions. In an experimental study recording setup becomes difficult due to infragravity motions within the surf zone, hence, it would be desirable to measure the setup with available methodologies and devices. In this research, an analysis is made of evaluated the convenience of direct estimation setup as the medium level in the swash zone for experimental runup analysis through a physical model. A physical mobile bed model was setup in a wave flume at the Laboratory for Maritime Experimentation of CEDEX. The wave flume is 36 metres long, 6.5 metres wide and 1.3 metres high. The physical model was designed to cover a reasonable range of parameters, three different slopes (1/50, 1/30 and 1/20), two sand grain sizes (D50 = 0.12 mm and 0.70 mm) and a range for the Iribarren number in deep water (ξ0) from 0.1 to 0.6. Best formulations were chosen for estimating a theoretical setup in the physical model application. Once theoretical setup had been obtained, a comparison was made with an estimation of the setup directly as a medium level of the oscillation in swash usually considered in extreme runup analyses. A good correlation was noted between both theoretical and time-averaging setup and a relation is proposed. Extreme runup is analysed through the sum of setup and semi-amplitude of swash. An equation is proposed that could be applied in strong foreshore slope-dependent reflective beaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary processes in the southeastern Weddell Sea are influenced by glacial-interglacial ice-shelf dynamics and the cyclonic circulation of the Weddell Gyre, which affects all water masses down to the sea floor. Significantly increased sedimentation rates occur during glacial stages, when ice sheets advance to the shelf edge and trigger gravitational sediment transport to the deep sea. Downslope transport on the Crary Fan and off Dronning Maud and Coats Land is channelized into three huge channel systems, which originate on the eastern-, the central and the western Crary Fan. They gradually turn from a northerly direction eastward until they follow a course parallel to the continental slope. All channels show strongly asymmetric cross sections with well-developed levees on their northwestern sides, forming wedge-shaped sediment bodies. They level off very gently. Levees on the southeastern sides are small, if present at all. This characteristic morphology likely results from the process of combined turbidite-contourite deposition. Strong thermohaline currents of the Weddell Gyre entrain particles from turbidity-current suspensions, which flow down the channels, and carry them westward out of the channel where they settle on a surface gently dipping away from the channel. These sediments are intercalated with overbank deposits of high-energy and high-volume turbidity currents, which preferentially flood the left of the channels (looking downchannel) as a result of Coriolis force. In the distal setting of the easternmost channel-levee complex, where thermohaline currents are directed northeastward as a result of a recirculation of water masses from the Enderby Basin, the setting and the internal structures of a wedge-shaped sediment body indicate a contourite drift rather than a channel levee. Dating of the sediments reveals that the levees in their present form started to develop with a late Miocene cooling event, which caused an expansion of the East Antarctic Ice Sheet and an invigoration of thermohaline current activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bodenformen an der Sohle von Flüssen, Küstenzonen und flachen Schelfen sind wichtige skalenübergreifende Elemente der Küstendynamik in ihren Eigenschaften als Transportkörper von Sedimenten und ihrer Wirkung auf die Strömungsdynamik als Rauheitselemente. Neben vielen neueren Studien über die Entstehung, Gestalt und Dynamik von Bodenformen in vergleichsweise kleinen Untersuchungsgebieten ist die Arbeit von ULRICH (1973) über die Verteilung von Bodenformen in der Deutschen Bucht bis heute die einzige verfügbare zusammenhängende Darstellung für die deutsche Nordseeküste. Die analogen Karten und die Darstellung der Klassifizierung in Buchstabenkürzeln macht sie für heutige quantitative Analysen schwer zugänglich. Hier wurden diese Karten digitalisiert und Eigenschaften der Bodenformen rekonstruiert und interpretiert. Das Ergebnis ist eine Zusammenstellung digitaler Karten eines vollständigen - und eines auf steile, hydrodynamisch wirksame Bodenformen reduzierten Datensatzes der Minimal, Maximalund Mittelwerte von Höhen, Längen und Steilheiten von Bodenformen in der Deutschen Bucht. Die Datensätze stehen der Allgemeinheit in der Datenbank Pangaea zur Verfügung. Bedforms in rivers, coastal zones and shallow shelf seas are important cross-scale elements of coastal dynamics in their function as sediment transport agent and in their effect on the flow dynamics as roughness elements. In addition to many recent studies on the origin, shape and dynamics of bedforms in relatively small study areas the work of ULRICH (1973) on the classification of bedform types in the German Bight is until today the only available coherent representation of the spatial distribution of bedforms for the whole German coastal sea. The analogue maps and the coded classification makes them difficult to access for quantitative analyses. Here these maps were digitized and properties of the bedforms were reconstructed and interpreted. Resulting digital maps of the whole and a reduced dataset on steep bedforms contain minimum, maximum and average values of heights, lengths and steepness of bedform types in the German Bight. The data sets are available to the public in the database Pangaea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29° - 40°S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29° - 33°S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36° - 40°S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobío river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.