943 resultados para Surface tension.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The numerical solutions of or(R) given by two different methods (Samsonov et al., 2003; and Lu et al., 2005) are compared with the result that they are coincident closely (the difference is within 4%). We conclude that it is necessary to consider the Tolman correction in the calculation of fluid dynamics in carbon nanotubes. Although our conclusion is the same as that of Prylutskyy et al. (2005), the sign of our Tolman correction is opposite to theirs, and the difference can be attributed to the errors appeared in the paper of Prylutskyy et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports that an optical diagnostic system consisting of Mach-Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect the outcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new model consisting of an inhomogeneous porous medium saturated by incompressible fluid is investigated. We focus on the effects of inhomogeneity for the streamline patterns and instabilities of the system. Influences of the 'mean porosity' and gradient of distributions of porosity are also emphasized. The results cannot be obtained by studying the media with constant porosity as carried out by other researchers, and have not been discussed before.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The onset of oscillation in the floating zone convection driven by the gradient of surface tension was experimentally studied, and discussions were concentrated on the influence of liquid bridge volume on the onset of oscillation. Distributions of critical applied temperature difference and frequency depending on the volume of the liquid bridge were obtained, and there was a gap range of liquid volume which separated the curve of marginal stability into two parts for fixed rod diameter and aspect ratio. The results imply that the volume of the liquid bridge is a sensitive critical parameter for the onset of oscillation. The implication on the instability is also discussed in the present paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element algorithm is used to analyze the process of floating zone crystal growth under microgravity. The effect of phase change convection coupled with surface tension convection is considered. The results show that the rate of crystal growth is very important. The single-crystal-melt interface is steeper than the feed-melt interface during the process of crystal growth. When the rate exceeds a critical value, the Marangoni vortex near the feed-melt interface will become so large that a secondary vortex will exist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用Wilhelmy吊片法测量了不同浓度下异丙醇、正丁醇、正戊醇水溶液在25℃到65℃温度范围内的表面张力值.结果显示,在适当的浓度下,当温度超过某确定值时,被测溶液的表面张力随温度升高而增大,并且随着醇类中碳原子个数的增加,这种现象更为明显.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A critical review on the mechanism and models on the bubble-to-slug transition of two-phase gas-liquid flows are presented in the present paper. It is shown that the most possible mechanism controlled the bubble-to-slug transition is the bubble coalescence. Focusing on the bubble-to-slug transition for the low-Re two-phase flow, a simple Monte Carlo method is used to simulate the influence of the initial bubble size on the bubble-to-slug transition. Some secondary factors, such as the liquid viscosity, the surface tension, and the relative slip between the two phases, are ignored in the present study. It is found that the locus of the dimensionless rate of collision is a universal curve. Based on this curve, it is determined that the bubble initial size can affect the phase distribution and flow pattern when its dimensionless value is in the range from 0.03 to 0.4. A simple relationship between the critical void fraction and the initial bubble size is proposed, which agrees very well with the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper will introduce an atomization experiment of pulsed supersonic water jets and polymer polyacrylamide (PAA) (0.1% and 1.0% weight density) solution jets. The jets are generated from a small high-speed liquid jet apparatus. The schlieren photography is applied to visualize the jets. The velocities of the jets are measured by cutting two laser beams. The effects of the nozzle diameter and the standoff distance on atomization and the jet velocity have been examined. The experiment shows that the polymer solution jets are easier to be atomized than water jets. This may be due to low surface tension of the polymer solution. The nozzle diameter causes different shock structures around the supersonic jets.