656 resultados para Surface net tow
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73 %) followed by thin films (14 %). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.
Resumo:
Two methods are developed to estimate net surface energy fluxes based upon satellite-based reconstructions of radiative fluxes at the top of atmosphere and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis. Method 1 applies the mass adjusted energy divergence from ERA-Interim while method 2 estimates energy divergence based upon the net energy difference at the top of atmosphere and the surface from ERA-Interim. To optimise the surface flux and its variability over ocean, the divergences over land are constrained to match the monthly area mean surface net energy flux variability derived from a simple relationship between the surface net energy flux and the surface temperature change. The energy divergences over the oceans are then adjusted to remove an unphysical residual global mean atmospheric energy divergence. The estimated net surface energy fluxes are compared with other data sets from reanalysis and atmospheric model simulations. The spatial correlation coefficients of multi-annual means between the estimations made here and other data sets are all around 0.9. There are good agreements in area mean anomaly variability over the global ocean, but discrepancies in the trend over the eastern Pacific are apparent.
Resumo:
In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm**-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm**-2 and 397 Wm**-2, respectively, this leaves 106 Wm**-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm**-2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.
Resumo:
Effective conservation and management of top predators requires a comprehensive understanding of their distributions and of the underlying biological and physical processes that affect these distributions. The Mid-Atlantic Bight shelf break system is a dynamic and productive region where at least 32 species of cetaceans have been recorded through various systematic and opportunistic marine mammal surveys from the 1970s through 2012. My dissertation characterizes the spatial distribution and habitat of cetaceans in the Mid-Atlantic Bight shelf break system by utilizing marine mammal line-transect survey data, synoptic multi-frequency active acoustic data, and fine-scale hydrographic data collected during the 2011 summer Atlantic Marine Assessment Program for Protected Species (AMAPPS) survey. Although studies describing cetacean habitat and distributions have been previously conducted in the Mid-Atlantic Bight, my research specifically focuses on the shelf break region to elucidate both the physical and biological processes that influence cetacean distribution patterns within this cetacean hotspot.
In Chapter One I review biologically important areas for cetaceans in the Atlantic waters of the United States. I describe the study area, the shelf break region of the Mid-Atlantic Bight, in terms of the general oceanography, productivity and biodiversity. According to recent habitat-based cetacean density models, the shelf break region is an area of high cetacean abundance and density, yet little research is directed at understanding the mechanisms that establish this region as a cetacean hotspot.
In Chapter Two I present the basic physical principles of sound in water and describe the methodology used to categorize opportunistically collected multi-frequency active acoustic data using frequency responses techniques. Frequency response classification methods are usually employed in conjunction with net-tow data, but the logistics of the 2011 AMAPPS survey did not allow for appropriate net-tow data to be collected. Biologically meaningful information can be extracted from acoustic scattering regions by comparing the frequency response curves of acoustic regions to theoretical curves of known scattering models. Using the five frequencies on the EK60 system (18, 38, 70, 120, and 200 kHz), three categories of scatterers were defined: fish-like (with swim bladder), nekton-like (e.g., euphausiids), and plankton-like (e.g., copepods). I also employed a multi-frequency acoustic categorization method using three frequencies (18, 38, and 120 kHz) that has been used in the Gulf of Maine and Georges Bank which is based the presence or absence of volume backscatter above a threshold. This method is more objective than the comparison of frequency response curves because it uses an established backscatter value for the threshold. By removing all data below the threshold, only strong scattering information is retained.
In Chapter Three I analyze the distribution of the categorized acoustic regions of interest during the daytime cross shelf transects. Over all transects, plankton-like acoustic regions of interest were detected most frequently, followed by fish-like acoustic regions and then nekton-like acoustic regions. Plankton-like detections were the only significantly different acoustic detections per kilometer, although nekton-like detections were only slightly not significant. Using the threshold categorization method by Jech and Michaels (2006) provides a more conservative and discrete detection of acoustic scatterers and allows me to retrieve backscatter values along transects in areas that have been categorized. This provides continuous data values that can be integrated at discrete spatial increments for wavelet analysis. Wavelet analysis indicates significant spatial scales of interest for fish-like and nekton-like acoustic backscatter range from one to four kilometers and vary among transects.
In Chapter Four I analyze the fine scale distribution of cetaceans in the shelf break system of the Mid-Atlantic Bight using corrected sightings per trackline region, classification trees, multidimensional scaling, and random forest analysis. I describe habitat for common dolphins, Risso’s dolphins and sperm whales. From the distribution of cetacean sightings, patterns of habitat start to emerge: within the shelf break region of the Mid-Atlantic Bight, common dolphins were sighted more prevalently over the shelf while sperm whales were more frequently found in the deep waters offshore and Risso’s dolphins were most prevalent at the shelf break. Multidimensional scaling presents clear environmental separation among common dolphins and Risso’s dolphins and sperm whales. The sperm whale random forest habitat model had the lowest misclassification error (0.30) and the Risso’s dolphin random forest habitat model had the greatest misclassification error (0.37). Shallow water depth (less than 148 meters) was the primary variable selected in the classification model for common dolphin habitat. Distance to surface density fronts and surface temperature fronts were the primary variables selected in the classification models to describe Risso’s dolphin habitat and sperm whale habitat respectively. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.
In Chapter Five I present a summary of the previous chapters and present potential analytical steps to address ecological questions pertaining the dynamic shelf break region. Taken together, the results of my dissertation demonstrate the use of opportunistically collected data in ecosystem studies; emphasize the need to incorporate middle trophic level data and oceanographic features into cetacean habitat models; and emphasize the importance of developing more mechanistic understanding of dynamic ecosystems.
Resumo:
Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed
Resumo:
Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.
Resumo:
This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.
Resumo:
Results from sediment trap experiments conducted in the seasonal upwelling area off south Java from November 2000 until July 2003 revealed significant monsoon-, El Niño-Southern Oscillation-, and Indian Ocean Dipole-induced seasonal and interannual variations in flux and shell geochemistry of planktonic foraminifera. Surface net primary production rates together with total and species-specific planktonic foraminiferal flux rates were highest during the SE monsoon-induced coastal upwelling period from July to October, with three species Globigerina bulloides, Neogloboquadrina pachyderma dex., and Globigerinita glutinata contributing to 40% of the total foraminiferal flux. Shell stable oxygen isotopes (d18O) and Mg/Ca data of Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii in the sediment trap time series recorded surface and subsurface conditions. We infer habitats of 0-30 m for G. ruber at the mixed layer depth, 60-80 m (60-90 m) for P. obliquiloculata (N. dutertrei) at the upper thermocline depth, and 90-110 m (100-150 m) for G. menardii in the 355-500 mm (>500 µm) size fraction corresponding to the (lower) thermocline depth in the study area. Shell Mg/Ca ratio of G. ruber (s.l. and s.s.) reveals an exponential relationship with temperature that agrees with published relationships particularly with the Anand et al. (2003) equations. Flux-weighted foraminiferal data in sediment trap are consistent with average values in surface sediment samples off SW Indonesia. This consistency confirms the excellent potential of these proxies for reconstructing past environmental conditions in this part of the ocean realm.
Resumo:
"September 1973."
Resumo:
Membrane-permeable calmodulin inhibitors, such as the napthalenesulfonamide derivatives W-7/W-13, trifluoperazine, and calmidazolium, are used widely to investigate the role of calcium/calmodulin (Ca2+/CaM) in living cells. If two chemically different inhibitors (e.g. W-7 and trifluoperazine) produce similar effects, investigators often assume the effects are due to CaM inhibition. Zeta potential measurements, however, show that these amphipathic weak bases bind to phospholipid vesicles at the same concentrations as they inhibit Ca 2 /CaM; this suggests that they also bind to the inner leaflet of the plasma membrane, reducing its negative electrostatic surface potential. This change will cause electrostatically bound clusters of basic residues on peripheral (e.g. Src and K-Ras4B) and integral (e.g. epidermal growth factor receptor (EGFR)) proteins to translocate from the membrane to the cytoplasm. We measured inhibitor-mediated translocation of a simple basic peptide corresponding to the calmodulin-binding juxtamembrane region of the EGFR on model membranes; W-7/W-13 causes translocation of this peptide from membrane to solution, suggesting that caution must be exercised when interpreting the results obtained with these inhibitors in living cells. We present evidence that they exert dual effects on autophosphorylation of EGFR;W-13 inhibits epidermal growth factordependent EGFR autophosphorylation under different experimental conditions, but in the absence of epidermal growth factor, W-13 stimulates autophosphorylation of the receptor in four different cell types. Our interpretation is that the former effect is due toW-13inhibition of Ca 2 /CaM, but thelatter results could be due to binding of W-13 to the plasma membrane.
Resumo:
The 222Radon tracer method is a powerful tool to estimate local and regional surface emissions of, e.g., greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of nonhomogeneously spread emission sources, and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO2 and 222Radon to estimate CO2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO2 and δ(O2/N2) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO2 emissions based on 2 years of observations are estimated at (11.2 ± 2.9) kt km−2 a−1. Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.