965 resultados para Surface molecular imprint


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a curnene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the H.MWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans to determine if a double application would prevent leakage. This evaluation has not been completed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-permeable calmodulin inhibitors, such as the napthalenesulfonamide derivatives W-7/W-13, trifluoperazine, and calmidazolium, are used widely to investigate the role of calcium/calmodulin (Ca2+/CaM) in living cells. If two chemically different inhibitors (e.g. W-7 and trifluoperazine) produce similar effects, investigators often assume the effects are due to CaM inhibition. Zeta potential measurements, however, show that these amphipathic weak bases bind to phospholipid vesicles at the same concentrations as they inhibit Ca 2 /CaM; this suggests that they also bind to the inner leaflet of the plasma membrane, reducing its negative electrostatic surface potential. This change will cause electrostatically bound clusters of basic residues on peripheral (e.g. Src and K-Ras4B) and integral (e.g. epidermal growth factor receptor (EGFR)) proteins to translocate from the membrane to the cytoplasm. We measured inhibitor-mediated translocation of a simple basic peptide corresponding to the calmodulin-binding juxtamembrane region of the EGFR on model membranes; W-7/W-13 causes translocation of this peptide from membrane to solution, suggesting that caution must be exercised when interpreting the results obtained with these inhibitors in living cells. We present evidence that they exert dual effects on autophosphorylation of EGFR;W-13 inhibits epidermal growth factordependent EGFR autophosphorylation under different experimental conditions, but in the absence of epidermal growth factor, W-13 stimulates autophosphorylation of the receptor in four different cell types. Our interpretation is that the former effect is due toW-13inhibition of Ca 2 /CaM, but thelatter results could be due to binding of W-13 to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena oli tutkia pintaliimatärkkelysten reologista käyttäytymistä korkeissa kuiva-ainepitoisuuksissa. Tarve työn suorittamiselle syntyi kun tutkittiin pintaliimausta filminsiirtopuristimella tavallista korkeammissa kuiva-ainepitoisuuksissa, sileän sauvan ollessa applikointilaitteena. Koska applikointi sileällä sauvalla tapahtuu hydrodynaamisten periaatteiden mukaisesti, sen käyttö edellyttää pintaliimojen reologisten ominaisuuksien tarkkaa tuntemusta ja hallintaa.Kiinnostuksen kohteena olevat ominaisuudet olivat tärkkelysten kuiva-ainepitoisuuden (8 – 30 %) vaikutus viskositeettiin eri lämpötiloissa (20, 30, 40 ja 50 ºC), leikkausnopeus alueella 1 s-1 - 700 000 s-1. Myös tärkkelysten myötörajat määritettiin tutkimuksessa. Viskositeetti eri leikkausnopeusalueilla mitattiin seuraavilla laitteilla: Bohlin VOR (matalat leikkausnopeudet ja myötöraja) ja Hercules HiShear (keskitason leikkausnopeudet) reometrit sekä Eklund kapillaariviskometri (korkeat leikkausno-peudet). Analysoidut tärkkelykset olivat kaksi anionista matalaviskoottista peruna (tärkkelys A) ja ohra (tärkkelys C) tärkkelystä, sekä yksi kationinen korkeaviskoottinen peruna tärkkelys (tärkkelys B). Tutkittujen tärkkelysten Brookfield viskositeetit (100 rpm) olivat (10 % liuos, 60 °C:ssa) tärkkelys A ja C: 25 ± 5 mPas ja tärkkelys B: 100 ± 20 mPas.Tärkkelysliuosten kuiva-ainepitoisuuden noustessa muuttui virtauskäyttäytyminen Newtoniaalisesta leikkausohenevaksi. Leikkausoheneva käyttäytyminen oli voimakkainta tärkkelys B:n kohdalla. Viskositeetti – lämpötila riippuvuus korkeissa leikkausnopeuksissa (esim. 500 000 s-1) oli vähäisempää, mitä oli oletettavissa Brookfield viskositeettiarvojen perusteella. Kaikki tarkkelykset osoittautuivat tiksotrooppisiksi, myös tiksotrooppisuus lisääntyi kuiva-ainepitoisuuden kasvaessa. Tärkkelysten myötörajat osoittautuivat odottamattoman alhaisiksi, kuitenkin varsinkin tärkkelys B:n myötörajat olivat selvästi riippuvaisia lämpötilasta ja kuiva-ainepitoisuudesta. Tutkittujen tärkkelysten virtauskäyttäytyminen oli kirjallisuudessa esitetyn kaltaista. Tärkkelysmolekyylien ketjun pituus oli tärkein tärkkelyksen reologisia ominaisuuksia määrittävä tekijä; mitä matalampi on tärkkelyksen molekyylimassa, sitä matalammat ovat viskositeetti ja myötöraja. Pintaliimauksessa tärkkelysmolekyylien ketjunpituudella on suuri vaikutus ajettavuuteen ja lopputuotteen ominaisuuksiin. Haasteellista pintaliimatärkkelyksen valinnassa on sellaisen yhdistelmän löytäminen, jossa sopivan reologisen käyttäytymisen omaava tärkkelys ja pintaliimatulle paperille tai kartongille asetetut vaatimukset kohtaavat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed "exhausted" T cells. We compared the transcriptome of "exhausted" CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac) of polymer-surfactant complexes and the critical micellar concentration (cmc) of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS) mixtures, solutions containing poly(ethylene oxide)-SDS, poly(vinylpyrrolidone)-SDS and poly(acrylic acid)-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results and discussions in this thesis are based on my studies about selfassembled thiol layers on gold, platinum, silver and copper surfaces. These kinds of layers are two-dimensional, one molecule thick and covalently organized at the surface. They are an easy way to modify surface properties. Self-assembly is today an intensive research field because of the promise it holds for producing new technology at nanoscale, the scale of atoms and molecules. These kinds of films have applications for example, in the fields of physics, biology, engineering, chemistry and computer science. Compared to the extensive literature concerning self-assembled monolayers (SAMs) on gold, little is known about the structure and properties of thiolbased SAMs on other metals. In this thesis I have focused on thiol layers on gold, platinum, silver and copper substrates. These studies can be regarded as a basic study of SAMs. Nevertheless, an understanding of the physical and chemical nature of SAMs allows the correlation between atomic structure and macroscopic properties. The results can be used as a starting point for many practical applications. X-ray photoelectron spectroscopy (XPS) and synchrotron radiation excited high resolution photoelectron spectroscopy (HR-XPS) together with time-offlight secondary ion mass spectrometry (ToF-SIMS) were applied to investigate thin organic films formed by the spontaneous adsorption of molecules on metal surfaces. Photoelectron spectroscopy was the main method used in these studies. In photoelectron spectroscopy, the sample is irradiated with photons and emitted photoelectrons are energy-analyzed. The obtained spectra give information about the atomic composition of the surface and about the chemical state of the detected elements. It is widely used in the study of thin layers and is a very powerful tool for this purpose. Some XPS results were complemented with ToF-SIMS measurements. It provides information on the chemical composition and molecular structure of the samples. Thiol (1-Dodecanethiol, CH3(CH2)11SH) solution was used to create SAMs on metal substrates. Uniform layers were formed on most of the studied metal surfaces. On platinum, surface aligned molecules were also detected in investigations by XPS and ToF-SIMS. The influence of radiation on the layer structure was studied, leading to the conclusion that parts of the hydrocarbon chains break off due to radiation and the rest of the layer is deformed. The results obtained showed differences depending on the substrate material. The influence of oxygen on layer formation was also studied. Thiol molecules were found to replace some of the oxygen from the metal surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central goal of food safety policy in the European Union (EU) is to protect consumer health by guaranteeing a high level of food safety throughout the food chain. This goal can in part be achieved by testing foodstuffs for the presence of various chemical and biological hazards. The aim of this study was to facilitate food safety testing by providing rapid and user-friendly methods for the detection of particular food-related hazards. Heterogeneous competitive time-resolved fluoroimmunoassays were developed for the detection of selected veterinary residues, that is coccidiostat residues, in eggs and chicken liver. After a simplified sample preparation procedure, the immunoassays were performed either in manual format with dissociation-enhanced measurement or in automated format with pre-dried assay reagents and surface measurement. Although the assays were primarily designed for screening purposes providing only qualitative results, they could also be used in a quantitative mode. All the developed assays had good performance characteristics enabling reliable screening of samples at concentration levels required by the authorities. A novel polymerase chain reaction (PCR)-based assay system was developed for the detection of Salmonella spp. in food. The sample preparation included a short non-selective pre-enrichment step, after which the target cells were collected with immunomagnetic beads and applied to PCR reaction vessels containing all the reagents required for the assay in dry form. The homogeneous PCR assay was performed with a novel instrument platform, GenomEra, and the qualitative assay results were automatically interpreted based on end-point time-resolved fluorescence measurements and cut-off values. The assay was validated using various food matrices spiked with sub-lethally injured Salmonella cells at levels of 1-10 colony forming units (CFU)/25 g of food. The main advantage of the system was the exceptionally short time to result; the entire process starting from the pre-enrichment and ending with the PCR result could be completed in eight hours. In conclusion, molecular methods using state-of-the-art assay techniques were developed for food safety testing. The combination of time-resolved fluorescence detection and ready-to-use reagents enabled sensitive assays easily amenable to automation. Consequently, together with the simplified sample preparation, these methods could prove to be applicable in routine testing.