959 resultados para Surface Electron Donating Properties
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.
Resumo:
Sm2O3 - vanadia catalysts have been prepared by wet impregnation method using NH4VO3 solution. The surface properties of the prepared catalysts have been studied using FTIR. XRD. surface area and pore volume data. The acid-base properties of the system have been investigated by titrimetric method using Hammett indicators. adsorption of electron acceptors as well as decomposition of cyclohexanol. Phenol alkylation reaction by methanol has been carried out to investigate the catalytic activity. It has been observed that the selectivity of the products depends upon the composition of the supported system
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To investigate the dosimetric properties of an electronic portal imaging device (EPID) for electron beam detection and to evaluate its potential for quality assurance (QA) of modulated electron radiotherapy (MERT). Methods: A commercially available EPID was used to detect electron beams shaped by a photon multileaf collimator (MLC) at a source-surface distance of 70 cm. The fundamental dosimetric properties such as reproducibility, dose linearity, field size response, energy response, and saturation were investigated for electron beams. A new method to acquire the flood-field for the EPID calibration was tested. For validation purpose, profiles of open fields and various MLC fields (square and irregular) were measured with a diode in water and compared to the EPID measurements. Finally, in order to use the EPID for QA of MERT delivery, a method was developed to reconstruct EPID two-dimensional (2D) dose distributions in a water-equivalent depth of 1.5 cm. Comparisons were performed with film measurement for static and dynamic monoenergy fields as well as for multienergy fields composed by several segments of different electron energies. Results: The advantageous EPID dosimetric properties already known for photons as reproducibility, linearity with dose, and dose rate were found to be identical for electron detection. The flood-field calibration method was proven to be effective and the EPID was capable to accurately reproduce the dose measured in water at 1.0 cm depth for 6 MeV, 1.3 cm for 9 MeV, and 1.5 cm for 12, 15, and 18 MeV. The deviations between the output factors measured with EPID and in water at these depths were within ±1.2% for all the energies with a mean deviation of 0.1%. The average gamma pass rate (criteria: 1.5%, 1.5 mm) for profile comparison between EPID and measurements in water was better than 99% for all the energies considered in this study. When comparing the reconstructed EPID 2D dose distributions at 1.5 cm depth to film measurements, the gamma pass rate (criteria: 2%, 2 mm) was better than 97% for all the tested cases. Conclusions: This study demonstrates the high potential of the EPID for electron dosimetry, and in particular, confirms the possibility to use it as an efficient verification tool for MERT delivery.
Resumo:
The accurate electron density and linear optical properties of L-histidinium hydrogen oxalate are discussed. Two high-resolution single crystal X-ray diffraction experiments were performed and compared with density functional calculations in the solid state as well as in the gas phase. The crystal packing and the hydrogen bond network are accurately investigated using topological analysis based on quantum theory of atoms in molecules, Hirshfeld surface analysis, and electrostatic potential mapping. The refractive indices are computed from couple perturbed Kohn-Sham calculations and measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze the origin of the linear susceptibility in the crystal, in order to separate molecular and intermolecular causes. The optical properties are also correlated with the electron density distribution. This compound also offers the possibility to test the electron density building block approach for material science and different refinement schemes for accurate positions and displacement parameters of hydrogen atoms, in the absence of neutron diffraction data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a FRRF instrument, operating in a flow-through mode during the 2009-2012 part of the expedition. It operates by exciting chlorophyll fluorescence using a series of short flashes of controlled energy and time intervals (Kolber et al, 1998). The fluorescence transients produced by this excitation signal were analysed in real-time to provide estimates of abundance of photosynthetic pigments, the photosynthetic yields (Fv/Fm), the functional absorption cross section (a proxy for efficiency of photosynthetic energy acquisition), the kinetics of photosynthetic electron transport between Photosystem II and Photosystem I, and the size of the PQ pool. These parameters were measured at excitation wavelength of 445 nm, 470nm, 505 nm, and 535 nm, allowing to assess the presence and the photosynthetic performance of different phytoplankton taxa based on the spectral composition of their light harvesting pigments. The FRRF-derived photosynthetic characteristics were used to calculate the initial slope, the half saturation, and the maximum level of Photosynthesis vs Irradiance relationship. FRRF data were acquired continuously, at 1-minute time intervals.
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
In adhesion, the wetting process depends on three fundamental factors: the surface topography of the adherend, the viscosity of the adhesive, and the surface energy of both. The aim of this paper is to study the influence of viscosity and surface roughness on the wetting and their effect on the bond strength. For this purpose, an acrylic adhesive with different viscosities was synthesized and some properties, such as viscosity and surface tension, were studied before adhesive curing took place. Furthermore, the contact angle and the lap-shear strength were analyzed using aluminum adherends with two different roughnesses. Scanning electron microscopy was used to determine the effect of the viscosity and the roughness on the joint interface. The results showed that the adhesive exhibits an optimal value of viscosity. Below this value, at low viscosities, the low neoprene content produces poor bond strength due to the reduced toughness of the adhesive. Additionally, it also produces a high shrinkage during curing, which leads to the apparition of residual stresses that weakens the interfacial strength. However, once the optimum value, an increase in the viscosity produces a negative effect on the joint strength as a result of an important decrease in the wettability.
Resumo:
The surfaces of iron-containing sulphide minerals were oxidised by a range of inorganic oxidants, and the resultant surface alteration products studied using various spectroscopic techniques. The characterisation of surface oxidation is relevant to the alteration of ores in nature and their behaviour during flotation and leaching, of importance to the metallurgical industry. The sulphides investigated included pyrite (FeS2), hexagonal pyrrhotine (Fe9S10), monoclinic pyrrhotine (Fe7Se), violarite (FeNi2S4), pentlandite ((FeiNi)9Se), chalcopyrite (CuFeS2) and arsenopyrite (FeAsS). The surfaces were oxidised by various methods including acid (sulphuric), alkali (ammonium hydroxide), hydrogen peroxide, steam, electrochemical and air/oxygen (in a low-temperature (150ºC) furnace), The surfaces were examined using surface sensitive chemical spectroscopic methods including x-ray photoelectron spectroscopy (ms), Auger electron spectroscopy (LES) and conversion electron Mössbauer spectroscopy (CEKS). Physical characterisation of the surfaces was undertaken using scanning electron microscopy (SM), spectral reflectance measurements and optical microscopy. Bulk characterisation of the sulphide minerals was undertaken using x-ray diffraction and electron microprobe techniques. Observed phases suggested to form in most of the sulphide surfaces include Fe204, Fe1-x0, Fe202, Fe00H, Fe(OH)3, with iron II & III oxy-sulphates. The iron sulphides show variable extents of oxidation, indicating pyrite to be the most stable. Violarite shows stability to oxidation, suggested to result from both its stable spinel crystal structure, and from the rapid formation of sulphur at the surface protecting the sub-surface from further oxidation. The phenomenon of sub-surface enrichment (in metals), forming secondary sulphides, is exhibited by pentlandite and chalcopyrite, forming violarite and copper sulphides respectively. The consequences of this enrichment with regard to processing and leaching are discussed. Arsenopyrite, often a hindrance in ore processing, exhibits the formation of arsenic compounds at the surface, the dissolution of which is discussed in view of the possible environmental hazard caused by the local pollution of water systems. The results obtained allow a characterisation of the sulphides in terms of their relative stability to oxidation, and an order of stability of the sulphide surfaces is proposed. Models were constructed to explain the chemical compositions of the surfaces, and the inter-relationships between the phases determined at the surface and in the sub-surface. These were compared to the thermo-chemically predicted phases shown in Eh/pH and partial pressure diagrams! The results are discussed, both in terms of the mineralogy and geochemistry of natural ores, and the implications for extraction and processing of these ore minerals.