941 resultados para Supported catalysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (RSs) are responsible for the essential connection of amino acids with trinucleotide sequences of tRNA's. The RS family constitutes two structurally dissimilar groups of proteins, class I and class II. Methionyl-tRNA synthetase (MetRS) and isoleucyl-tRNA synthetase (IleRS), both members of class I, were the focus of this work. Both enzymes are zinc-containing proteins; show a high degree of amino acid specificity; and edit activated noncognate amino acids, thereby ensuring the fidelity of the genetic code. The goals of this work were to further delineate the molecular basis of catalysis and discrimination in these enzymes by mapping active site geometries using high-resolution nuclear magnetic resonance spectroscopy (NMR).^ Internuclear distances obtained from transferred nuclear Overhauser effects were used to define the conformations of Mg($\alpha$,$\beta$-methylene)ATP bound to E. coli MetRS and E. coli IleRS in multiple complexes. Identical conformations were found for the bound ATP. Thus, the predicted structural homology between IleRS and MetRS is supported by consensus enzyme-bound nucleotide conformations. The conformation of the bound nucleotide is not sensitive to occupation of the amino acid site of MetRS or IleRS. Therefore, conformational changes known to occur in the synthetases upon ligand binding appear not to alter the bound conformation of the adenosine portion of the nucleotide. Nuclear Overhauser effects on the substrate amino acid L-selenomethionine were also used to evaluate the enzyme-bound conformation of the cognate amino acid. The amino acid assumes a conformation which is consistent with a proposed editing mechanism.^ The E. coli MetRS was shown to catalyze amino acid $\alpha$-proton exchange in the presence of deuterium oxide of all cognate amino acids. It is proposed that the enzyme-bound zinc coordinates the $\alpha$-carboxylate of the amino acid, rendering the $\alpha$-proton more acidic. An enzymic base is responsible for exchange of the $\alpha$-proton. This proposal suggests that the enzyme-bound zinc may have a role in amino acid discrimination in MetRS. However, the role of this exchange reaction in catalysis remains unknown. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of catalysts based on Pd nanoparticles supported on inorganic supports such as BETA and ZSM-5 zeolites, a silicoaluminophosphate molecular sieve (SAPO-5) and γ-alumina as a standard support have been tested for the total oxidation of naphthalene (100 ppm, total flow 50 ml/min) showing a conversion to carbon dioxide of 100% between 165 and 180 °C for all the analysed catalysts. From the combined use of zeolites with PVP polymer protected Pd based nanoparticles, enhanced properties have been found for the total abatement of naphthalene in contrast with other kinds of catalysts. A Pd/BETA catalyst has been demonstrated to have excellent activity, with a high degree of stability, as shown by time on line experiments maintaining 100% conversion to CO2 during the 48 h tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on the preparation of thin films of ZSM-5 and BETA zeolites, and a SAPO-5 silicoaluminophosphate, supported on cordierite honeycomb monoliths by in situ synthesis was carried out for their use as catalyst supports. Furthermore γ-Al2O3 was also coated onto a cordierite honeycomb monolith by a dip-coating method for use as a standard support. Structured monolithic catalysts were prepared by impregnation of the aforementioned coated monoliths with polymer-protected Pd nanoparticles. The monolithic catalysts have been tested for the total oxidation of naphthalene (100 ppm, GHSV 1220 h−1). From the combined use of the zeolite with polymer-protected nanoparticles, enhanced catalytic properties have been found for the total abatement of naphthalene. The Pd/MBETA and Pd/MZSM-5 catalytic monoliths have shown excellent activity with a high degree of stability, even after undergoing accelerated ageing experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts based on palladium nanoparticles supported on different zeolites (BETA, ZSM-5 and Y) were prepared and their catalytic performance in formic acid dehydrogenation was studied. The effects of the zeolite structure and porous texture on the catalytic activity were investigated by comparing the behavior of these samples. The results revealed that the samples based on BETA zeolite are promising catalysts for this application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, the preferential oxidation of CO in excess hydrogen (PROX reaction) was studied over Au catalysts supported on ceria and Y or Nb doped ceria. Both supports and catalysts have been extensively characterized by a number of advanced techniques; XRD, N2-adsortion, Raman spectroscopy, XPS, and H2-TPR. The catalytic results showed that when an ideal mixture of H2 and CO is used for the PROX reaction the gold supported on pure ceria behaves better than the others samples. However, when a typical reformate gas composition containing CO2 and H2O is used, the gold supported on Nb doped sample behaves better than gold supported in pure ceria. It is suggested that niobium hampers the strong adsorption of CO2 and H2O in the active sites, thus improving the catalytic performance in real reformate gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to improve some of the less desirable properties of bio-oil via the catalytic fast pyrolysis of sugarcane bagasse using a novel supported molybdenum carbide (20 wt.% MoC/AlO ) catalyst. Proximate and elemental analysis of the bagasse were carried out to determine the moisture, ash, carbon, hydrogen, nitrogen and oxygen content. The ground pellets were classified in sieves to a size range of 0.25-1 mm and were pyrolysed in a 300 g h fluidised bed reactor at 500 C. MoC/AlO replaced the sand in the fluidised bed reactor in different proportions (0 wt.%, 12 wt.%, 25 wt.% and 50 wt.%) to investigate the effect of this catalyst on the pyrolysis products. Bio-oil yield results showed that ground sugarcane bagasse pellets gave high organic yields in the bio-oil of 60.5 wt.% on dry feed with a total liquid yield of 73.1 wt.% on dry feed without catalyst. Increasing the catalyst proportions in the fluidised bed reduced bio-oil yields, significantly reduced sugars (as a-levoglucosan) concentration and increased furanics and phenolics concentration in the bio-oil. It was observed that the higher the concentration of the 20 wt.% MoC/AlO catalyst in the fluidised bed the lower the viscosity of the bio-oil. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dual catalyst system for the Selective Catalytic Reduction of NOx with hydrocarbons (HC-SCR), including distinct low and high temperature formulations, is proposed as a means to abate NOx emissions from diesel engines. Given that satisfactory high temperature HC-SCR catalysts are already available, this work focuses on the development of an improved low temperature formulation. Pt supported on multiwalled carbon nantubes (MWCNTs) was found to exhibit superior NOx reduction activity in comparison with Pt/Al2O3, while the MWCNT support displayed a higher resistance to oxidation than activated carbon. Refluxing the MWCNT support in a 1:1 mixture of H2SO4 and HNO3 prior to the metal deposition step proved to be beneficial for the metal dispersion and the NOx reduction performance of the resulting catalysts. This support effect is ascribed to the increased Brønsted acidity of the acid-treated MWCNTs, which in turn enhances the partial oxidation of the hydrocarbon reductant. Further improvements in the HC-SCR performance of MWCNT-based formulations were achieved using a 3:1 Pt–Rh alloy as the supported phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption), as well as with ammonia adsorption microcalorimetry. Good results are obtained with initial glycerol conversions of over 70% and with 50-70% selectivity to acrolein. We investigate the influence of changing the catalyst acid strength by varying the niobia content and catalyst calcination temperature. Glycerol conversion and acrolein selectivity depend on the surface acid strength. Catalyst deactivation by coking is also observed, but simple oxidative treatment in air restores the activity of the catalysts completely. © The Author(s) 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous mesoporous molecular sieves (SBA-15) have been functionalised with propylsulfonic acid groups by both co-condensing 3-mercaptopropyltrimethoxysilane with the solid at the synthesis (sol-gel) stage and by grafting the same compound to pre-prepared SBA-15, followed, in both cases, by oxidation to sulfonic acid. The acidic and catalytic properties of the supported sulfonic acids prepared in the two ways have been compared, using ammonia adsorption calorimetry and the benzylation reaction between benzyl alcohol and toluene. Using a combination of X-ray photoelectron spectroscopy and other analytical techniques, the level of functionalisation and the extent of subsequent oxidation of tethered thiol to sulfonic acid, both in the bulk and close to the surface of SBA-15 particles, have been assessed. The research shows that the co-condensing route leads to higher levels of functionalisation than the grafting route. The extent of oxidation of added thiol to acid groups is similar using the two routes, about 70% near the surface and only 50% in the bulk. Comparison is made with polymer supported sulfonic acid catalysts, Amberlysts 15 and 35, and Nafion. Nafion shows the highest acid strength and the highest specific catalytic activity of all materials studied. Amongst the other materials, average acid strengths are broadly similar but there appears to be a relationship between the concentration of acid sites on the catalysts and their specific activity in the benzylation reaction. A model is proposed to explain this, in which clustering of sulfonic acid groups, even to a small extent, leads to disproportionately enhanced catalytic activity. © 2009 Elsevier B.V. All rights reserved.