937 resultados para Super Absorbent Polymers
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.
Resumo:
Invocatio: [hepreaa].
Resumo:
The objective of this work was to synthesize nanosilicas with different degree of hydrophobicity by the sol-gel method, using tetraethyl orthosilicate as a precursor. For this purpose, 3-aminopropyl triethoxysilane (APS) and 1,1,1,3,3,3 - hexamethyldisilazane (HMDS), were added during synthesis as modifiers. A commercial biopolymer (Hexamoll Dinch, BASF) intended for packaging of apples, was added to the new nanosilicas. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, potentiometric titration, porosity, specific surface area and hydrophobicity/hydrophilicity by wetting test. Colorimetry was used to evaluate change in apple pulp color after contact with the different silicas.
Resumo:
Separations using supercritical fluid chromatography (SFC) with packed columns have been re-discovered and explored in recent years. SFC enables fast and efficient separations and, in some cases, gives better results than high performance liquid chromatography (HPLC). This paper provides an overview of recent advances in SFC separations using packed columns for both achiral and chiral separations. The most important types of stationary phases used in SFC are discussed as well as the most critical parameters involved in the separations and some recent applications.
Resumo:
Styrene is used in a variety of chemical industries. Environmental and occupational exposures to styrene occur predominantly through inhalation. The major metabolite of styrene is present in two enantiomeric forms, chiral R- and S- hydroxy-1-phenyl-acetic acid (R-and S-mandelic acid, MA). Thus, the concentration of MA, particularly of its enantiomers, has been used in urine tests to determine whether workers have been exposed to styrene. This study describes a method of analyzing mandelic acid using molecular imprinting techniques and HPLC detection to perform the separation of diastereoisomers of mandelic acid. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting using (+) MA, (-) MA or (+) phenylalanine, (-) phenylalanine as templates. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of the template molecules. The bulk polymerization was carried out at 4ºC under UV radiation. The resulting MIP was grounded into 25~44¼m particles, which were slurry packed into analytical columns. After the template molecules were removed, the MIP-packed columns were found to be effective for the chromatographic resolution of (±)-mandelic acid. This method is simpler and more convenient than other chromatographic methods.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Lähikenttä- ja kaukokenttämikroskopian yhdistäminen: Uusi korkearesoluutioinen menetelmä nanokuvantamiseen. Osteoporoosi on sairaus, jossa luun uudistumisprosessi ei ole enää tasapainossa. Uuden luun muodostuminen on hitaampaa johtuen osteoblastien laskeneesta aktiivisuudesta. Yksi keino estää osteoporoosin syntyä on estää osteoklastien sitoutuminen luun pinnalle, jolloin ne eivät aloita luun syömisprosessia. Tämän Pro gradu -tutkielman tarkoituksena on luoda uusi työkalu osteoklastien sitoutumisen tutkimiseen samanaikaisesti fluoresenssi- ja atomivoimamikroskoopilla. Tätä tarkoitusta varten yhdistettiin atomivoimamikroskooppi sekä STED mikroskooppi. Kirjallisuuskatsauksessa käydään läpi yksityiskohtaisesti molempien mikroskooppitekniikoiden teoriat. Kokeellisessa osiossa esitetään käytetyt metodit ja alustavat tulokset uudella systeemillä. Lisäksi keskustellaan lyhyesti kuvan analysoinnista ImageJohjelmalla. Konfokaalisen fluoresenssimikroskoopin ja atomivoimamikroskoopin yhdistelmä on keksitty jo aikaisemmin, mutta tavallisen konfokaalimikroskoopin erottelukyvyn raja on noin 200 nanometriä johtuen valon diffraktioluonteesta. Yksityiskohdat eivät erotu, jos ne ovat pienempiä kuin puolet käytettävästä aallonpituudesta. STED mikroskooppi mahdollistaa fluoresenssikuvien taltioimisen solunsisäisistä prosesseista 50 nanometrin lateraalisella erotuskyvyllä ja atomivoimamikroskooppi antaa topografista tietoa näytteestä nanometrien erotuskyvyllä. Biologisia näytteitä kuvannettaessa atomivoimamikroskoopin erotuskyky kuitenkin huononee ja yleensä saavutetaan 30-50 nanometrin erotuskyky. Kuvien kerrostaminen vaatii vertauspisteitä ja tätä varten käytettiin atomivoimamikroskoopin kärjen tunnistamista ja referenssipartikkeleita. Kuva-analysointi suoritettiin ImageJ-kuvankäsittelyohjelmalla. Tuloksista nähdään, että referenssipartikkelit ovat hyviä, mutta niiden sijoittaminen tarkasti tietylle kohdealueelle on hankalaa nanoskaalassa. Tästä johtuen kärjen havaitseminen fluoresenssikuvassa on parempi metodi. Atomivoimamikroskoopin kärki voidaan päällystää fluoresoivalla aineella, mutta tämä lisää kärjen aiheuttamaa konvoluutiota mittausdataan. Myös valon takaisinsirontaa kärjestä voidaan tutkia, jolloin konvoluutio ei lisäänny. Ensimmäisten kuvien kerrostamisessa käytettiin hyväksi fluoresoivalla aineella päällystettyä kärkeä ja lopputuloksessa oli vain 50 nanometrin yhteensopimattomuus fluoresenssi- ja topografiakuvan kanssa. STED mikroskoopin avulla nähdään leimattujen proteiinien tarkat sijainnit tiettynä ajankohtana elävän solun sisällä. Samaan aikaan pystytään kuvantamaan solun fyysisiä muotoja tai mitata adheesiovoimia atomivoimamikroskoopilla. Lisäksi voidaan käyttää funktinalisoitua kärkeä, jolla voidaan laukaista signalointitapahtumia solun ja soluväliaineen välillä. Sitoutuminen soluväliaineeseen voidaan rekisteröidä samoin kuin adheesiomediaattorien sijainnit sitoutumisalueella. Nämä dynaamiset havainnot tuottavat uutta informaatiota solun signaloinnista, kun osteoklasti kiinnittyy luun pintaan. Tämä teknologia tarjoaa uuden näkökulman monimutkaisiin signalointiprosesseihin nanoskaalassa ja tulee ratkaisemaan lukemattoman määrän biologisia ongelmia.
Resumo:
The water absorbent polymer effect on vegetative growth and production of Theoretical Recovery Sugar (TRS) of sugarcane cv. RB 86 7515 was evaluated on two field tests installed in randomized blocks, with four treatments and five repetitions. The polymer doses were 0; 4; 8 and 12 g m-1 of furrow (test 1) and 0; 1.4; 2.8 and 4.2 g m-1 of furrow (test 2). Test 1 (dec/2007 to may/2009) was implanted in a Distroferric Red Argisol soil in Presidente Prudente - State of São Paulo (SP), Brazil; and the test 2 (Aug/2008 to Aug/2009) was implanted in a Red Yellow Argisol soil in Lucélia - State of São Paulo (SP), Brazil. In test 2, there were no significant differences for any evaluated parameters. In both tests the polymer doses equal to or less than 4 g m-1 of furrow showed no significant effect on the evaluated parameters. In test 1, the polymer doses of 8 and 12 g m-1 of the conditioning polymer increased the number of tillers in stage II of development and led to the largest amount of straw. The gross income per hectare has positive relation with the polymer doses. The polymer had no significant effect on the sugarcane stems productivity and technological parameters.
Resumo:
A cirurgia geral atualmente é considerada, por alguns, como uma especialidade cansativa, desinteressante. Acredita-se que o aparecimento de novas tecnologias, a internet, a videocirurgia, a robótica, a telemedicina, a especialização e o desinteresse, dos recém formados, pela cirurgia geral são fatores que contribuem para esta mudança. Neste artigo são discutidas as mudanças no exercício da cirurgia geral que ocorrem no Brasil, no mundo, as suas consequencias na formação do Cirurgião Geral e o reflexo no atendimento à população.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
kuv., 14 x 22 cm
Resumo:
kuv., 14 x 21 cm
Resumo:
kuv., 14 x 21 cm