946 resultados para Sugar-energy industry
Resumo:
At head of title: Department of commerce. Bureau of foreign and domestic commerce. A.H. Baldwin, chief.
Resumo:
Special agent: Charles F. Saylor.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 21-22.
Resumo:
"July 11, 1996, September 9, 1996"--Pt. 2.
Resumo:
Shipping list no.: 2000-0115-P (pt. [1]), 2001-0034-P (pt. 2).
Resumo:
Australian sugar-producing regions have differed in terms of the extent and rate of incorporation of new technology into harvesting systems. The Mackay sugar industry has lagged behind most other sugar-producing regions in this regard. The reasons for this are addressed by invoking an evolutionary economics perspective. The development of harvesting systems, and the role of technology in shaping them, is mapped and interpreted using the concept of path dependency. Key events in the evolution of harvesting systems are identified, which show how the past has shaped the regional development of harvesting systems. From an evolutionary economics perspective, the outcomes observed are the end result of a specific history.
Resumo:
Purpose – The data used in this study is for the period 1980-2000. Almost midway through this period (in 1992), the Kenyan government liberalized the sugar industry and the role of the market increased, while the government's role with respect to control of prices, imports and other aspects in the sector declined. This exposed the local sugar manufacturers to external competition from other sugar producers, especially from the COMESA region. This study aims to find whether there were any changes in efficiency of production between the two periods (pre and post-liberalization). Design/methodology/approach – The study utilized two methodologies to efficiency estimation: data envelopment analysis (DEA) and the stochastic frontier. DEA uses mathematical programming techniques and does not impose any functional form on the data. However, it attributes all deviation from the mean function to inefficiencies. The stochastic frontier utilizes econometric techniques. Findings – The test for structural differences in the two periods does not show any statistically significant differences between the two periods. However, both methodologies show a decline in efficiency levels from 1992, with the lowest period experienced in 1998. From then on, efficiency levels began to increase. Originality/value – To the best of the authors' knowledge, this is the first paper to use both methodologies in the sugar industry in Kenya. It is shown that in industries where the noise (error) term is minimal (such as manufacturing), the DEA and stochastic frontier give similar results.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.