194 resultados para Succinate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prodrug, temozolomide acid hexyl ester (TMZA-HE), was identified as a skin-deliverable congener for temozolomide (TMZ) to treat skin cancers. Poor solubility and instability of TMZA-HE rendered a serious challenge for formulation of a topical preparation. Microemulsions (ME) were chosen as a potential vehicle for TMZA-HE topical preparations. ME systems were constructed with either oleic acid (OA) or isopropyl myristate (IPM) as the oil phase and tocopheryl (vitamin E) polyethylene glycol 1000 succinate (VE-TPGS) as a surfactant. Topical formulations of OA and IPM ME systems demonstrated beneficial solubilising ability and provided a stable environment for the prodrug, TMZA-HE. Significant differences between the microstructures of OA and IPM ME systems were revealed by freeze fracture electron microscopy (FFEM) and different loading abilities and permeation potencies between the two systems were also identified. In permeation studies, IPM ME systems, with inclusion of isopropyl alcohol (IPA) as a co-surfactant, significantly increased TMZA-HE permeation through silicon membranes and rat skin resulting in less drug retention within the skin, while OA ME systems demonstrated higher solubilising ability and a higher concentration of TMZA-HE retained within the skin. Therefore IPM ME systems are promising for transdermal delivery of TMZA-HE and OA ME systems may be a suitable choice for a topical formulation of TMZA-HE. © 2007 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specially-designed vertical wind tunnel was used to freely suspend individual liquid drops of 5 mm initial diameter to investigate drop dynamics, terminal velocity and heat and mass transfer rates. Droplets of distilled, de-ionised water, n-propanol, iso-butanol, monoethanolamine and heptane were studied over a temperature range of 50oC to 82oC. The effects of substances that may provide drop surface rigidity (e.g. surface active agents, binders and polymers) on mass transfer rates were investigated by doping distilled de-ionised water drops with sodium di-octyl sulfo-succinate surfactant. Mass transfer rates decreased with reduced drop oscillation as a result of surfactant addition, confirming the importance of droplet surface instability. Rigid naphthalene spheres and drops which formed a skin were also studied; the results confirmed the reduced transfer rates in the absence of drop fluidity. Following consideration of fundamental drop dynamics in air and experimental results from this study, a novel dimensionless group, the Oteng-Attakora, (OT), number was included in the mass transfer equation to account for droplet surface behaviour and for prediction of heat and mass transfer rates from single drops which exhibit surface instability at Re>=500. The OT number and the modified mass transfer equation are respectively: OT=(ava2/d).de1.5(d/) Sh = 2 + 0.02OT0.15Re0.88Sc0.33 Under all conditions drop terminal velocity increased linearly with the square root of drop diameter and the drag coefficient was 1. The data were correlated with a modified equation by Finlay as follows: CD=0.237.((Re/P0.13)1.55(1/We.P0.13) The relevance of the new model to practical evaporative spray processes is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme catalysed polytransesterification of diesters with diols was investigated under various conditions. The most consistent results were obtained using crude porcine pancreatic lipase (PPL) suspended in anhydrous diethyl ether. Addition of molecular sieve to the above system gave higher molecular weight products. The PPL catalysed reaction of bis(2,2,2-trichlorethyl) adipate and glutarate with butane-1,4-diol in anhydrous ether with and without molecular sieve was investigated over a range of times from 8 to 240 hours. The 72 hour adipate reaction with molecular sieve gave the highest molecular weight polymer (Mn 6,500 and Mw 9,400). The glutarate gave the maximum molecular weight polyester after 24 hours (Mn 5,700 and Mw 9,500). Occasionally the glutarate reaction produced very high molecular weight polyester-enzyme complexes. Toluene generally gave lower molecular weight products than diethyl ether. Dichloromethane and tetrahydrofuran gave mainly dimers and trimers. Alternative enzyme and diol systems were also investigated. These yielded no polymeric products. The molecular weights of the polyesters were determined by 1H NMR end-group analysis and by GPC. The molecular weights determined by NMR were on average about twice as great as those determined by GPC. The synthesis of the following diesters is described: i)Bis(2,2,2-trichloroethyl) succinate, glutarate, adipate, trans-3-hexenedioate, and trans-3,4-epoxyadipate. ii) Diphenyl glutarate and adipate.iii)Bis(2,2,2-fluoroethyl) glutarate and trans-3-hexendioate.iv) Divinyl glutarate. v) N,N'Glutaryl dicyclohexanone oxime.The polytransesterification of all the above esters with diols was investigated. The easily synthesised bis(2,2,2-trichloroethyl) glutarate and adipate gave the best results and the work was concentrated on these two esters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of effluents produced during the manufacture of metallurgical coke is normally carried out using the activated sludge process. The efficiency of activated sludges in purifying coke oven effluent depends largely on the maintenance of species of micro-organisms which destroy thiocyanate. The composition, production, toxicity and treatment of coke oven effluent at Corby steelworks are described. A review is presented which follows the progress made towards identifying and monitoring the species of bacteria which destroy thiocyanate in biological treatment plants purifying coke oven effluents. In the present study a search for bacteria capable of destroying thiocyanate led to the isolation of a species of bacteria, identified as Pseudomonas putida, which destroyed thiocyanate in the presence of succinate; this species had not previously been reported to use thiocyanate. Washed cell suspensions of P. putida destroyed phenol and thiocyanate simultaneously and thiocyanate destruction was not suppressed by pyridine, aniline or catechol at the highest concentrations normally encountered in coke oven effluent. The isolate has been included, as N.C.I.B. 11198, in the National Collection of Industrial Bacteria, Torrey Research Station, Aberdeen. Three other isolates, identified as Achromobacter sp., Thiobacillus thioparus and T. denitrificans, were also confirmed to destroy thi.ocyanate. A technique has been developed for monitoring populations of different species of bacteria in activated sludges. Application of this technique to laboratory scale and full scale treatment plants at Corby showed that thiobacilli were usually not detected; thiobacilli were el~inated during the commissioning period of the full scale plant. However experiments using a laboratory scale plant indicated that during a period of three weeks an increase in the numbers of thiobacilli might have contributed to an improvement in plant performance. Factors which might have facilitated the development of thiobacilli are discussed. Large numbers of fluorescent pseudomonads capable of using thiocyanate were sometimes detected in the laboratory scale plant. The possibility is considered that catechol or other organic compounds in the feed-liquor might have stimulated fluorescent pseudmonads. Experiments using the laboratory scale plant confirmed that deteriorations in the efficiency of thiocyanate destruction were sometimes caused by bulking sludges, due to the excessive growth of fungal floes. Increased dilution of the coke oven effluent was a successful remedy to this difficulty. The optimum operating conditions recommended by the manufacturer of the full scale activated sludge plant at Corby are assessed and the role of bacterial monitoring in a programme of regular monitoring tests is discussed in relation to the operation of activated sludge plants treating coke oven effluents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco2, such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco2 and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco2 and by 15% in response to a combination of increased Pco2 and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco2 and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 µg/m**3 from impactor samples and to 24.2 µg/m**3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1-8 ng/m**3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5-10 µm; 1.2-3.5 µm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71 µg/m**3) and EC (1.25 µg/m**3) was measured. The minimum of TC (0.25 µg/m**3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 µg/m**3), calcium (0.22 vs. 0.03 µg/m**3) and potassium (0.33 vs. 0.02 µg/m**3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 µm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78-151 ng/m**3) and methanesulfonic acid (MSA, 25-100 ng/m**3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cells have been noted to have an altered metabolic phenotype for over ninety years. In the presence of oxygen, differentiated cells predominately utilise the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to efficiently produce energy and the metabolites necessary for protein and lipid synthesis. However, in hypoxia, this process is altered and cells switch to a higher rate of glycolysis and lactate production to maintain their energy and metabolic needs. In cancer cells, glycolysis is maintained at a high rate, even in the presence of oxygen; a term described as “aerobic glycolysis”. Tumour cells are rapidly dividing and have a much greater need for anabolism compared to normal differentiated cells. Rapid glucose metabolism enables faster ATP production as well as a greater redistribution of carbons to nucleotide, protein, and fatty acid synthesis, thus maximising cell growth. Recently, other metabolic changes, driven by mutations in genes related to the TCA cycle, indicate an alternative role for metabolism in cancer, the “oncometabolite”. This is where a particular metabolite builds up within the cell and contributes to the tumorigenic process. One of these genes is isocitrate dehydrogenase (IDH) IDH is an enzyme that forms part of the tricarboxylic acid (TCA) cycle and converts isocitrate to α-ketoglutarate (α-KG). It exists in three isoforms; IDH1, IDH2 and IDH3 with the former present in the cytoplasm and the latter two in the mitochondria. Point mutations have been identified in the IDH1 and IDH2 genes in glioma which result in a gain of function by converting α-KG to 2-hydroxyglutarate (2HG), an oncometabolite. 2HG acts as a competitive inhibitor of the α-KG dependent dioxygenases, a superfamily of enzymes that are involved in numerous cellular processes such as DNA and histone demethylation. It was hypothesised that the IDH1 mutation would result in other metabolic changes in the cell other than 2HG production, and could potentially identify pathways which could be targeted for therapeutic treatment. In addition, 2HG can act as a potential competitive inhibitor of α-KG dependent dioxygenases, so it was hypothesised that there would be an effect on histone methylation. This may alter gene expression and provide a mechanism for tumourogenesis and potentially identify further therapeutic targets. Metabolic analysis of clinical tumour samples identified changes associated with the IDH1 mutation, which included a reduction in α-KG and an increase in GABA, in addition to the increase in 2HG. This was replicated in several cell models, where 13C labelled metabolomics was also used to identify a possible increase in metabolic flux from glutamate to GABA, as well as from α-KG to 2HG. This may provide a mechanism whereby the cell can bypass the IDH1 mutation as GABA can be metabolised to succinate in the mitochondria by GABA transaminase via the GABA shunt. JMJ histone demethylases are a subset of the α-KG dependent dioxygenases, and are involved in removing methyl groups from histone tails. Changes in histone methylation are associated with changes in gene expression depending on the site and extent of chemical modification. To identify whether the increase in 2HG and fall in α-KG was associated with inhibition of histone demethylases a histone methylation screen was used. The IDH1 mutation was associated with an increase in methylation of H3K4, which is associated with gene activation. ChiP and RNA sequencing identified an increase in H3K4me3 at the transcription start site of the GABRB3 subunit, resulting in an increase in gene expression. The GABRB3 subunit forms part of the GABA-A receptor, a chloride channel, which on activation can reduce cell proliferation. The IDH1 mutation was associated with an increase in GABA and GABRB3 subunit of the GABA-A receptor. This raises the possibility of GABA transaminase as a potential therapeutic target. Inhibition of this enzyme could reduce GABA metabolism, potentially reducing any beneficial effect of the GABA shunt in IDH1 mutant tumours, and increasing activation of the GABA-A receptor by increasing the concentration of GABA in the brain. This in turn may reduce cell proliferation, and could be achieved by using Vigabatrin, a GABA transaminase inhibitor licensed for use in epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766HT, was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002 m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 degrees C (optimum 30 degrees C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H-2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C-14 : 0, C-16:1 omega 7, C-16:1 omega 7 DMA and C-16:0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G +C content of the genomic DNA was 33.7 molo/o. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridia les, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) (=DSM 27501(T)=JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella pro funda.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium alginate as the biocompatible polymers. Methods: Implants of methylprednisolone sodium succinate (MPSS) were prepared by molding the drug-loaded polymeric mass obtained after ionotropic gelation method. The prepared implants were evaluated for drug loading, in vitro drug release and in vivo performance in traumatic spinal-injury rat model with paraplegia. Results: All the implant formulations were light pale solid matrix with smooth texture. Implants showed 86.56 ± 2.07 % drug loading. Drug release was 89.29 ± 1.25 % at the end of 7 days. Motor function was evaluated in traumatic spinal injury-induced rats in terms of its movement on the horizontal bar. At the end of 7 days, the test group showed the activity score (4.75 ± 0.02) slightly higher than that of standard (4.62 ± 0.25), but the difference was not statistically different (p > 0.05). Conclusion: MPSS-loaded implants produces good recovery in traumatic spinal-injury rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les récepteurs couplés aux protéines G (RCPG) démontrent de plus en plus de capacités à activer des mécanismes jusqu’alors associés à des facteurs de transcription ou des molécules d’adhésion. En effet, de nouvelles preuves rapportent qu’ils pourraient également participer au guidage axonal qui est le mécanisme permettant aux axones de cellules nerveuses de rejoindre leur cible anatomique. Le guidage axonal se fait par l’interaction entre les molécules de guidage et une structure particulière présente à l’extrémité de l’axone, le cône de croissance. Par exemple, les RCPGs participent au guidage des cellules ganglionnaires de la rétine (CGR), dont les axones s’étendent de la rétine jusqu’au noyaux cérébraux associés à la vision. Cet effet est observé avec des RCPGs tels que les récepteurs aux cannabinoïdes (CB1 et CB2) et celui du lysophosphatidylinositol, le GPR55. Les RCPGs GPR91 et GPRG99, respectivement récepteurs au succinate et à l’α-cétoglutarate, se trouvent à la surface de ces CGRs, ce qui en font des candidats potentiels pouvant participer au guidage axonal. Dans ce mémoire, l’effet des ligands de ces récepteurs sur la croissance et la navigation des axones des CGRs fut analysé. L’impact produit par ces récepteurs ainsi que leurs ligands sur la morphologie des cônes de croissance fut déterminé en mesurant leur taille et le nombre de filopodes présents sur ces cônes. Pour évaluer le rôle du succinate et de l’a-cétoglutarate sur la croissance globale des axones de CGRs, la longueur totale des projections axonales d’explants rétiniens a été mesurée. L’effet de ces ligands des récepteurs GPR91 et GPR99 sur le guidage axonal a également été évalué en temps réel à l’aide d’un gradient créé par un micro injecteur placé à 45° et à 100µm du cône de croissance. La distribution in vivo des récepteurs GPR91 et GPR99 sur la rétine a été étudié à l’aide d’expériences d’immunohistochimie. Les résultats obtenus indiquent que l’ajout de 100µM de succinate produit une augmentation de la taille des cônes de croissance et du nombre de filopodes présents à leur surface. Il augmente également la croissance des axones. Ce type de réponse fut également observé lorsque les cellules furent soumises à 200µM d’α-cétoglutarate. Fait à noter, les deux récepteurs n’ont pas d’impact sur le guidage axonal. Ces résultats indiquent donc que les agonistes des récepteurs GPR91 et GPR99 augmentent la croissance des cellules ganglionnaires lorsqu’ils sont présents lors du développement. Par contre, ils n’ont pas d’influence sur la direction prise par les cônes de croissance. Ces nouvelles données sont un pas de plus dans la compréhension des mécanismes qui gèrent et participent au développement et la croissance des CGRs, ce qui pourrait donner de nouvelles cibles thérapeutique pouvant mener à la régénération de nerfs optiques endommagés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les récepteurs couplés aux protéines G (RCPG) démontrent de plus en plus de capacités à activer des mécanismes jusqu’alors associés à des facteurs de transcription ou des molécules d’adhésion. En effet, de nouvelles preuves rapportent qu’ils pourraient également participer au guidage axonal qui est le mécanisme permettant aux axones de cellules nerveuses de rejoindre leur cible anatomique. Le guidage axonal se fait par l’interaction entre les molécules de guidage et une structure particulière présente à l’extrémité de l’axone, le cône de croissance. Par exemple, les RCPGs participent au guidage des cellules ganglionnaires de la rétine (CGR), dont les axones s’étendent de la rétine jusqu’au noyaux cérébraux associés à la vision. Cet effet est observé avec des RCPGs tels que les récepteurs aux cannabinoïdes (CB1 et CB2) et celui du lysophosphatidylinositol, le GPR55. Les RCPGs GPR91 et GPRG99, respectivement récepteurs au succinate et à l’α-cétoglutarate, se trouvent à la surface de ces CGRs, ce qui en font des candidats potentiels pouvant participer au guidage axonal. Dans ce mémoire, l’effet des ligands de ces récepteurs sur la croissance et la navigation des axones des CGRs fut analysé. L’impact produit par ces récepteurs ainsi que leurs ligands sur la morphologie des cônes de croissance fut déterminé en mesurant leur taille et le nombre de filopodes présents sur ces cônes. Pour évaluer le rôle du succinate et de l’a-cétoglutarate sur la croissance globale des axones de CGRs, la longueur totale des projections axonales d’explants rétiniens a été mesurée. L’effet de ces ligands des récepteurs GPR91 et GPR99 sur le guidage axonal a également été évalué en temps réel à l’aide d’un gradient créé par un micro injecteur placé à 45° et à 100µm du cône de croissance. La distribution in vivo des récepteurs GPR91 et GPR99 sur la rétine a été étudié à l’aide d’expériences d’immunohistochimie. Les résultats obtenus indiquent que l’ajout de 100µM de succinate produit une augmentation de la taille des cônes de croissance et du nombre de filopodes présents à leur surface. Il augmente également la croissance des axones. Ce type de réponse fut également observé lorsque les cellules furent soumises à 200µM d’α-cétoglutarate. Fait à noter, les deux récepteurs n’ont pas d’impact sur le guidage axonal. Ces résultats indiquent donc que les agonistes des récepteurs GPR91 et GPR99 augmentent la croissance des cellules ganglionnaires lorsqu’ils sont présents lors du développement. Par contre, ils n’ont pas d’influence sur la direction prise par les cônes de croissance. Ces nouvelles données sont un pas de plus dans la compréhension des mécanismes qui gèrent et participent au développement et la croissance des CGRs, ce qui pourrait donner de nouvelles cibles thérapeutique pouvant mener à la régénération de nerfs optiques endommagés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impellent global environmental issues related to plastic materials can be addressed by following two different approaches: i) the development of synthetic strategies towards novel bio-based polymers, deriving from biomasses and thus identifiable as CO2-neutral materials, and ii) the development of new plastic materials, such as biocomposites, which are bio-based and biodegradable and therefore able to counteract the accumulation of plastic waste. In this framework, this dissertation presents extensive research efforts have been devoted to the synthesis and characterization of polyesters based on various bio-based monomers, including ω-pentadecalactone, vanillic acid, 2,5-furan dicarboxylic acid, and 5-hydroxymethylfurfural. With the aim of achieving high molecular weight polyesters, different synthetic strategies have been used as melt polycondensation, enzymatic polymerization, ring-opening polymerization and chain extension reaction. In particular, poly(ethylene vanillate) (PEV), poly(ω-pentadecalactone) (PPDL), poly(ethylene vanillate-co-pentadecalactone) (P(EV-co-PDL)), poly(2-hydroxymethyl 5-furancarboxylate) (PHMF), poly(ethylene 2,5-furandicarboxylate) (PEF) with different amount of diethylene glycol (DEG) unit amount, poly(propylene 2,5-furandicarboxylate) (PPF), poly(hexamethylene 2,5-furandicarboxylate), (PHF) have been prepared and extensively characterized. To improve the lacks of poly(hydroxybutyrate-co-valerate) (PHBV), its minimal formulations with natural additives and its blending with medium chain length PHAs (mcl-PHAs) have been tested. Additionally, this dissertation presents new biocomposites based on polylactic acid (PLA), poly(butylene succinate) (PBS), and PHBV, which are polymers both bio-based and biodegradable. To maintain their biodegradability only bio-fillers have been taken into account as reinforcing agents. Moreover, the commitment to sustainability has further limited the selection and led to the exclusive use of agricultural waste as fillers. Detailly, biocomposites have been obtained and discussed by using the following materials: PLA and agro-wastes like tree pruning, potato peels, and hay leftovers; PBS and exhausted non-compliant coffee green beans; PHBV and industrial starch extraction residues.