932 resultados para Structural Constraints of Kind (Min, Max)
Resumo:
Cu2ZnSnS4 is a promising semiconductor to be used as absorber in thin film solar cells. In this work, we investigated optical and structural properties of Cu2ZnSnS4 thin films grown by sulphurization of metallic precursors deposited on soda lime glass substrates. The crystalline phases were studied by X-ray diffraction measurements showing the presence of only the Cu2ZnSnS4 phase. The studied films were copper poor and zinc rich as shown by inductively coupled plasma mass spectroscopy. Scanning electron microscopy revealed a good crystallinity and compactness. An absorption coefficient varying between 3 and 4×104cm−1 was measured in the energy range between 1.75 and 3.5 eV. The band gap energy was estimated in 1.51 eV. Photoluminescence spectroscopy showed an asymmetric broad band emission. The dependence of this emission on the excitation power and temperature was investigated and compared to the predictions of the donor-acceptor-type transitions and radiative recombinations in the model of potential fluctuations. Experimental evidence was found to ascribe the observed emission to radiative transitions involving tail states created by potential fluctuations.
Resumo:
Biophysical Chemistry 110 (2004) 83–92
Resumo:
New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).
Resumo:
The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.
Resumo:
Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The isolation of the bartolosides, unprecedented cyanobacterial glycolipids featuring aliphatic chains with chlorine substituents and C-glycosyl moieties, is reported. Their chlorinated dialkylresorcinol (DAR) core presented a major structural-elucidation challenge. To overcome this, we discovered the bartoloside (brt) biosynthetic gene cluster and linked it to the natural products through in vitro characterization of the DAR-forming ketosynthase and aromatase. Bioinformatic analysis also revealed a novel potential halogenase. Knowledge of the bartoloside biosynthesis constrained the DAR core structure by defining key pathway intermediates, ultimately allowing us to determine the full structures of the bartolosides. This work illustrates the power of genomics to enable the use of biosynthetic information for structure elucidation.
Resumo:
J Biol Inorg Chem (2010) 15:409–420 DOI 10.1007/s00775-009-0613-6
Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase
Resumo:
J Biol Inorg Chem (2007) 12:353–366 DOI 10.1007/s00775-006-0191-9
Resumo:
J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica Estrutural e Funcional
Resumo:
A thesis to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica
Resumo:
If an opening to the argument of this dissertation is of imperative necessity, one might tentatively begin with Herbert Quain, born in Roscommon, Ireland, author of the novels The God of the Labyrinth (1933) and April March (1936), the short-story collection Statements (1939), and the play The Secret Mirror (undated). To a certain extent, this idiosyncratic Irish author, who hailed from the ancient province of Connacht, may be regarded as a forerunner of the type of novels which will be considered in this dissertation. Quain was, after all, the unconscious creator of one of the first structurally disintegrated novels in the history of western literature, April March. His first novel, The God of the Labyrinth, also exhibits elements which are characteristic of structurally disintegrated fiction, for it provides the reader with two possible solutions to a mysterious crime. As a matter of fact, one might suggest that Quain’s debut novel offers the reader the possibility to ignore the solution to the crime and carry on living his or her readerly life, turning a blind eye to the novel itself. It may hence be argued that Quain’s first novel is in fact a compound of three different novels. It is self-evident that the structure of Quain’s oeuvre is of an experimental nature, combining geometrical precision with authorial innovation, and one finds in it a higher consideration for formal defiance than for the text itself. In other words, the means of expression are the concern of the author and not, interestingly, the textual content. April March, for example, is a novel which regresses back into itself, its first chapter focussing on an evening which is preceded by three possible evenings which, in turn, are each preceded by three other, dissimilar, possible evenings. It is a novel of backward-movement, and it is due to this process of branching regression that April March contains within itself at least nine possible novels. Structure, therefore, paradoxically controls the text, for it allows the text to expand or contract under its formal limitations. In other words, the formal aspects of the novel, usually associated with the restrictive device of a superior design, contribute to a liberation of the novel’s discourse. It is paradoxical only in the sense that the idea of structure necessarily entails the fixation of a narrative skeleton that determines how plot and discourse interact, something which Quain flouts for the purposes of innovation. In this sense, April March’s convoluted structure allows for multiple readings and interpretations of the same text, consciously germinating narratives within itself, producing different texts from a single, unique source. Thus, text and means of expression are bonded by a structural design that, rather than limiting, liberates the text of the novel.
Resumo:
This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.