977 resultados para Stomach of rats


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollution, industrial solvents, concentrations of metals and other environmental agents are widely related to biochemicals values which are used in disease diagnosis of environmental toxicity. A rat bioassay validated for the identification of toxic effects of eutrophication revealed increased serum activities of amylase, alanine transaminase (BLT) and alkaline phosphatase (ALP) in rats that received algae, filtered water and nickel or cadmium from drinking water. Serum Cu-Zn superoxide dismutase activity decreased from its basal level of 40.8 +/- 2.3 to 26.4 U/mg protein, at 7 days of algae and at 48 hr of nickel and cadmium water ingestion. The observation that lipoperoxide concentration was not altered in rats treated with filtered water, while amylase, ALT and ALP were increased in these rats and in those treated with nickel or cadmium, indicated that pancreatic, hepatic and osteogenic lesions by eutrophication were not related to superoxide radicals, and might be due to a novel toxic environmental agent found in filtered and non-filtered algae water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of losartan (DUP-753) on the dipsogenic responses produced by intracerebroventricular (icv) injection of noradrenaline (40 nmol/mu l) and angiotensin II (ANG II) (2 ng/mu l) in male Holtzman rats weighing 250-300 g. The effect of DUP-753 was also studied in animals submitted to water deprivation for 30 h. After control injections of isotonic saline (0.15 M NaCl, 1 mu l) into the lateral ventricle (LV) the water intake was 0.2 +/- 0.01 ml/h. DUP-753 (50 nmol/mu l) when injected alone into the LV of satiated animals had no significant effect on drinking (0.4 +/- 0.02 ml/h) (N = 8). DUP-753 (50 nmol/mu l) injected into the LV prior to noradrenaline reduced the water intake from 2.4 +/- 0.8 to 0.8 +/- 0.2 ml/h (N = 8). The water intake induced by injection of ANG II and water deprivation was also reduced from 9.2 +/- 1.4 and 12.7 +/- 1.4 ml/h to 0.8 +/- 0.2 and 1.7 +/- 0.3 ml/h (N = 6 and N = 8), respectively. These data indicate a correlation between noradrenergic pathways and angiotensinergic receptors and lead us to conclude that noradrenaline-induced water intake may be due to the release of ANG II by the brain. The finding that water intake was reduced by DUP-753 in water-deprived animals suggests that dehydration releases ANG II, and that AT(1) receptors of the brain play an important role in the regulation of water intake induced by deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of chronic alcohol ingestion on the secretory epithelium of the seminal vesicle were studied in rats (Rattus norvegicus). Male adult albino Wistar rats were divided into two groups: alcoholic and control. Tips of the seminal vesicle were removed and prepared for light and electron microscopy. Ultrastructural observations on the epithelial cells of the seminal vesicle showed reduced epithelial cell size, decreased apical secretory vacuoles, irregularly shaped nuclei with deep infoldings, increased lipid droplets and dense bodies, a small number of microvilli covering the cell surface, and signs of degeneration. In addition to the hormonal effects, alcohol may act on the secretory epithelium of the seminal vesicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superoxide radical (O2-) is a free radical that may be involved in various toxic processes. Cu-Zn superoxide dismutase catalyses the dismutation of the superoxide free radical and protects cells from oxidative damage, and it has been used clinically. The concentration of Ni2+ and Cu-Zn superoxide dismutase activity were measured in lungs of rats at time intervals of 5, 12, 19, 26, 33, and 40 days following an intratracheal injection of 127 nmol of NiCl2. Nickel chloride increased nickel content and resulted in a significant increase of Cu-Zn superoxide dismutase activity in lungs. This elevation of Cu-Zn superoxide dismutase activity was highest on the 12th day (approximately threefold) and is at levels comparable to controls rats on day 40 onwards. Since Cu-Zn superoxide dismutase activity was increased in lung throughout our experimental period without corresponding increases of Cu2+ and Zn2+, we speculate that the elevation of Cu-Zn superoxide dismutase activity might be due to an increased half-life of the enzyme, induced by nickel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of fencamfamine (1.0 and 5.0 mg/kg, ip, single dose) on an inhibitory task were studied in rats (N = 15 per group). Post-training treatment with fencamfamine (1.0 mg/kg) significantly increased avoidance latency from 23 +/- 3 to 146 +/- 28 and 170 +/- 33 s for training day 1 and day 7, respectively, indicating an enhancement of retention. However, retention was significantly reduced with a high dose of fencamfamine (5.0 mg/kg). These results demonstrate that fencamfamine caused a reproducible dose-related increase and reduction in avoidance latency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the central nervous system (CNS) were studied in rats. Behavioural and neurochemical studies were performed. Results show that acute and oral administration of dimethylamine 2,4-D was able to decrease locomotion and rearing frequencies and to increase immobility duration of rats observed in an open-field test. Treatment of rats with p-chlorophenylalanine (PCPA) was unable to change rat's open-field behaviour; 5-hydroxytryptophan (5-HTP) administration not only increased locomotion and rearing frequences but also decreased immobility duration. Pretreatment of the rats with PCPA and 5-HTP decreased and increased dimethylamine 2,4-D effects, respectively. The herbicide was not able to change the striatal levels of dopamine and homovanilic acid but decreased the striatal levels of serotonin (5-HT), as observed for the doses of 100 and 200 mg/kg and increased those of 5-hydroxyindoleacetic acid (5-HIAA) as measured after the 200 mg/kg dose treatment. When the levels of serotonin and 5-HIAA were measured at the brain stem level, only those of 5-HIAA were modified, being increased by diethylamine 2,4-D (60; 100 and 200 mg/kg); this increment on 5-HIAA levels was observed even 1 hr after pesticide administration. Further analysis showed that 2,4-D concentrations chromatographycally detected both in serum and brain of the intoxicated animals were dose-dependent, being found as early as 1 hr after the smaller dose of the herbicide used (10 mg/kg). The results suggest that diethylamine 2,4-D modify 5-HT functional activity within the CNS. Thus, the effects of the herbicide on open-field behaviour of rats could be attributed to a direct or indirect pesticide action on serotoninergic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated if overfed rats present morphological and histochemical muscle adaptation similar to normally fed, both submitted to two different weekly frequencies of training. Thirty male Wistar rats were fed either with standard chow (SCO) or with hypercaloric diet (HCO). They were subdivided into six subgroups: sedentary (SCO and HCO), trained twice/week (SC2 and HC2) and trained five times/week (SC5 and HC5). The trained groups swam 60 min/day, during 10 weeks. Twenty four hours after the last training, samples of Gastrocnemius were excised and stained with HE, NADH-TR and m-ATPase, and the capillary density was calculated. Total heart mass (HM) and the mass of atrium (AM), left (LV) and right (RV) ventricles were excised and weighted. The comparisons were made by ANOVA and by Covariance analysis, adjusting the variables by body weight. The results showed that the HCO achieved higher BM, however, absolute HM did not differ post training. Irrespective of the diet, rats that were trained twice a week presented significantly greater increase in the AM. In general, the SC5 and HC5 groups showed higher HM, LV, RV, proportion of oxidative fibres and capillary density, compared to the sedentary and twice week trained groups. A higher proportion of injuries (splitting) was noted in the HC2 and HC5 compared to SC2 and SC5. These results indicate that the frequency of training influenced the skeletal and heart adaptation and larger changes were observed in the 5x/week group, which ingested the standard diet. The 5x/week training groups also presented large amount of muscle fibres damage.