904 resultados para Stick-slip Instability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of insoluble surfactants on the instability of a two-layer film flow down an inclined plane is investigated based on the Orr-Sommerfeld boundary value problem. The study, focusing on Stokes flow P. Gao and X.-Y. Lu, ``Effect of surfactants on the inertialess instability of a two-layer film flow,'' J. Fluid Mech. 591, 495-507 (2007)], is further extended by including the inertial effect. The surface mode is recognized along with the interface mode. The initial growth rate corresponding to the interface mode accelerates at sufficiently long-wave regime in the presence of surface surfactant. However, the maximum growth rate corresponding to both interface and surface modes decelerates in the presence of surface surfactant when the upper layer is more viscous than the lower layer. On the other hand, when the upper layer is less viscous than the lower layer, a new interfacial instability develops due to the inertial effect and becomes weaker in the presence of interfacial surfactant. In the limit of negligible surface and interfacial tensions, respectively, two successive peaks of temporal growth rate appear in the long-wave and short-wave regimes when the interface mode is analyzed. However, in the case of the surface mode, only the long-wave peak appears. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many theories and mechanisms have been proposed to explain the phenomenon of clear-air turbulence (CAT), and some of them have been successful in predicting light, moderate and, in some cases, severe turbulence. It is only recently that skill in the forecasting of the severe form of CAT, which could lead to injuries to passengers and damage to aircraft, has improved. Recent observations and simulations suggest that some severe to extreme turbulence could be caused by horizontal vortex tubes resulting from secondary instabilities of regions of high shear in the atmosphere. We have conducted direct numerical simulations to understand the scale relationship between primary structures (larger-scale structures related to one of the causes mentioned above) and secondary structures (smaller-sized, shear structures of the size of aircraft). From shear layer simulations, we find that the ratio of sizes of primary and secondary vortices is of the right order to generate aircraft-scale vortex tubes from typical atmospheric shear layers. We have also conducted simulations with a mesoscale atmospheric model, to understand possible causes of turbulence experienced by a flight off the west coast of India. Our simulations show the occurrence of primary flow structures related to synoptic conditions around the time of the incident. The evidence presented for this mechanism also has implications for possible methods of detection and avoidance of severe CAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms-(1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are colocated. Regions in the space of parameters characterizing the base flow velocity profile, i.e., shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on understanding prior experimental studies of combustion instability in backward facing step combustors and hydrodynamic instability in other flows such as heated jets and bluff body stabilized flames is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion instabilities can cause serious problems which limit the operating envelope of low-emission lean premixed combustion systems. Predicting the onset of combustion instability requires a description of the unsteady heat release driving the instability, i.e., the heat release response transfer function of the system. This study focuses on the analysis of fully coupled two-way interactions between a disturbance field and a laminar premixed flame that incorporates gas expansion effects by solving the conservation equations of a compressible fluid. Results of the minimum and maximum flame front deflections are presented to underline the impact of the hydrodynamic instability on the flame and the shear layer effect on the initial flame front wrinkling which is increased at decreasing gas expansion. These phenomena influence the magnitude of the burning area and burning area rate response of the flame at lower frequency excitation more drastically than reduced-order model (ROM) predictions even for low temperature ratios. It is shown that the general trend of the flame response magnitudes can be well captured at higher frequency excitation, where stretch effects are dominant. The phase response is influenced by the DL mechanism, which cannot be captured by the ROM, and by the resulting discrepancy in the flame pocket formation and annihilation process at the flame tip. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a fully coupled time domain Reduced Order Modelling (ROM) approach to model unsteady combustion dynamics in a backward facing step combustor The acoustic field equations are projected onto the canonical acoustic eigenmodes of the systems to obtain a coupled system of modal evolution equations. The heat release response of the flame is modelled using the G-equation approach. Vortical velocity fluctuations that arise due to shear layer rollup downstream of the step are modelled using a simplified 1D-advection equation whose phase speed is determined from a linear, local, temporal stability analysis of the shear layer just downstream of the step. The hydrodynamic stability analysis reveals a abrupt change in the value of disturbance phase speed from unity for Re < Re-crit to 0.5 for Re > Re-crit, where Remit for the present geometry was found to be approximate to 10425. The results for self-excited flame response show highly wrinkled flame shapes that are qualitatively similar to those seen in prior experiments of acoustically forced flames. The effect of constructive and destructive interference between the two contributions to flame surface wrinkling results in high amplitude wrinkles for the case when K-c -> 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF similar to (1/4,1/4,1/4 +/- delta).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give strong numerical evidence that a self-interacting probe scalar field in AdS, with only a few modes turned on initially, will undergo fast thermalization only if it is above a certain energetic threshold. Below the threshold the energy stays close to constant in a few modes for a very long time instead of cascading quickly. This indicates the existence of a Strong Stochasticity Threshold (SST) in holography. The idea of SST is familiar from certain statistical mechanical systems, and we suggest that it exists also in AdS gravity. This would naturally reconcile the generic nonlinear instability of AdS observed by Bizon and Rostworowski, with the Fermi-Pasta-Ulam-Tsingou-like quasiperiodicity noticed recently for some classes of initial conditions. We show that our simple setup captures many of the relevant features of the full gravity-scalar system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that a mechanism, known as magnetorotational instability (MRI), is responsible for transporting matter in the presence of a weak magnetic field. However, there are some shortcomings, which question the effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g., transient growth (TG), can play an important role in bringing nonlinearity into the system, even at weak magnetic fields. In addition, it should be determined whether MRI or TG is primarily responsible for revealing nonlinearity in order to make the flow turbulent. Our results prove explicitly that the flows with a high Reynolds number (Re), which is the case for realistic astrophysical accretion disks, exhibit nonlinearity via TG of perturbation modes faster than that by modes producing MRI. For a fixed wave vector, MRI dominates over transient effects only at low Re, lower than the value expected to be in astrophysical accretion disks, and low magnetic fields. This calls into serious question the (overall) persuasiveness of MRI in astrophysical accretion disks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations are performed to study the stability characteristics of a molten salt thermocline storage unit. Perturbations are introduced into a stable flow field in such a way as to make the top-fluid heavier than the fluid at the bottom, thereby causing a possible instability in the system. The evolution pattern of the various disturbances are examined in detail. Disturbances applied for short duration get decayed before they could reach the thermocline, whereas medium and long duration disturbances evolve into a ``falling spike'' or ``stalactite-like'' structure and destabilize the thermocline. Rayleigh Taylor instability is observed inside the storage tank. The effect of the duration, velocity and temperature of the disturbance on thermocline thickness and penetration length are studied. A quadratic time dependence of penetration length was observed. New perspectives on thermocline breakdown phenomena are obtained from the numerical flow field. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of an amorphous indium-gallium-zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1-2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface separately.