995 resultados para Statistics Support


Relevância:

20.00% 20.00%

Publicador:

Resumo:

All over the world Distributed Generation is seen as a valuable help to get cleaner and more efficient electricity. To get negotiation power and advantages of scale economy, distributed producers can be aggregated giving place to a new concept: the Virtual Power Producer. Virtual Power Producers are multitechnology and multi-site heterogeneous entities. Virtual Power Producers should adopt organization and management methodologies so that they can make Distributed Generation a really profitable activity, able to participate in the market. In this paper we address the development of a multi-agent market simulator – MASCEM – able to study alternative coalitions of distributed producers in order to identify promising Virtual Power Producers in an electricity market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing electric installation projects, demands not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. A lot of additional empirical knowledge is missing and so the academic instruction must be completed with different kinds of knowledge, such as real-life practical examples and simulations. On the other hand, the practical knowledge detained by the most experienced designers is not formalized in such a way that is easily transmitted. In order to overcome these difficulties present in the engineers formation, we are developing an Intelligent Tutoring System (ITS), for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate physical and psychological dimensions of adolescent labor (such as job demands, job control, and social support in the work environment), and their relation to reported body pain, work injuries, sleep duration and daily working hours. METHODS: A total of 354 adolescents attending evening classes at a public school in São Paulo, Brazil, answered questionnaires regarding their living and working conditions (Karasek's Job Content Questionnaire, 1998), and their health status. Data collection took place in April and May 2001. Multiple logistic regression analysis was used to determine relations among variables. RESULTS: Psychological job demands were related to body pain (OR=3.3), higher risk of work injuries (OR=3.0) and reduced sleep duration in weekdays (Monday to Thursday) (p<0.01). Lower decision authority in the workplace (p=0.03) and higher job security (p=0.02) were related to longer daily working hours. CONCLUSIONS: It was concluded that besides physical stressors, psychological factors are to be taken into account when studying adolescent working conditions, as they may be associated with negative job conditions and health effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this descriptive study was to map mental health research in Brazil, providing an overview of infrastructure, financing and policies mental health research. As part of the Atlas-Research Project, a WHO initiative to map mental health research in selected low and middle-income countries, this study was carried out between 1998 and 2002. Data collection strategies included evaluation of governmental documents and sites and questionnaires sent to key professionals for providing information about the Brazilian mental health research infrastructure. In the year 2002, the total budget for Health Research was US$101 million, of which US$3.4 million (3.4) was available for Mental Health Research. The main funding sources for mental health research were found to be the São Paulo State Funding Agency (Fapesp, 53.2%) and the Ministry of Education (CAPES, 30.2%). The rate of doctors is 1.7 per 1,000 inhabitants, and the rate of psychiatrists is 2.7 per 100,000 inhabitants estimated 2000 census. In 2002, there were 53 postgraduate courses directed to mental health training in Brazil (43 in psychology, six in psychiatry, three in psychobiology and one in psychiatric nursing), with 1,775 students being trained in Brazil and 67 overseas. There were nine programs including psychiatry, neuropsychiatry, psychobiology and mental health, seven of them implemented in Southern states. During the five-year period, 186 students got a doctoral degree (37 per year) and 637 articles were published in Institute for Scientic Information (ISI)-indexed journals. The investment channeled towards postgraduate and human resource education programs, by means of grants and other forms of research support, has secured the country a modest but continuous insertion in the international knowledge production in the mental health area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.