969 resultados para Standard conditions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase equilibria simulations were performed on naturally quenched basaltic glasses to determine crystallization conditions prior to eruption of magmas at the Mid-Atlantic Ridge (MAR) east of Ascension Island (7°11°S).The results indicate that midocean ridge basalt (MORB) magmas beneath different segments of the MAR have crystallized over a wide range of pressures (100-900MPa). However, each segment seems to have a specific crystallization history. Nearly isobaric crystallization conditions (100-300MPa) were obtained for the geochemically enriched MORB magmas of the central segments, whereas normal (N)-MORB magmas of the bounding segments are characterized by polybaric crystallization conditions (200-900MPa). In addition, our results demonstrate close to anhydrous crystallization conditions of N-MORBs, whereas geochemically enriched MORBs were successfully modeled in the presence of 0.4-1wt% H2O in the parental melts.These estimates are in agreement with direct (Fourier transform IR) measurements of H2O abundances in basaltic glasses and melt inclusions for selected samples. Water contents determined in the parental melts are in the range 0.04-0.09 and 0.30-0.55 wt% H2O for depleted and enriched MORBs, respectively. Our results are in general agreement (within ±200MPa) with previous approaches used to evaluate pressure estimates in MORB. However, the determination of pre-eruptive conditions of MORBs, including temperature and water content in addition to pressure, requires the improvement of magma crystallization models to simulate liquid lines of descent in the presence of small amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future oceans are predicted to contain less oxygen than at present. This is because oxygen is less soluble in warmer water and predicted stratification will reduce mixing. Hypoxia in marine environments is thus likely to become more widespread in marine environments and understanding species-responses is important to predicting future impacts on biodiversity. This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 36 years, and has a well-characterized ecology and physiology to understand responses to hypoxia and how the effect varied with age. Younger animals had a higher condition index, higher adenylate energy charge and transcriptional profiling indicated that they were physically active in their response to hypoxia, whereas older animals were more sedentary, with higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, in part, to age-related tissue scaling; older animals had proportionally less contractile muscle mass and smaller gills and foot compared with younger animals, with consequential effects on the whole-animal physiological response. The data here emphasize the importance of including age effects, as large mature individuals appear to be less able to resist hypoxic conditions and this is the size range that is the major contributor to future generations. Thus, the increased prevalence of hypoxia in future oceans may have marked effects on benthic organisms' abilities to persist and this is especially so for long-lived species when predicting responses to environmental perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 µatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) and warming related to the anthropogenic increase in atmospheric CO2 have been shown to have detrimental effects on several marine organisms, especially those with calcium carbonate structures such as corals. In this study, we evaluate the response of two Mediterranean shallow-water azooxanthellate corals to the projected pH and seawater temperature (ST) scenarios for the end of this century. The colonial coral Astroides calycularis and the solitary Leptopsammia pruvoti were grown in aquaria over a year under two fixed pH conditions, control (8.05 pHT units) and low (7.72 pHT units), and simulating two annual ST cycles, natural and high (+3 °C). The organic matter (OM), lipid and protein content of the tissue and the skeletal microdensity of A. calycularis were not affected by the stress conditions (low pH, high ST), but the species exhibited a mean 25 % decrease in calcification rate at high-ST conditions at the end of the warm period and a mean 10 % increase in skeletal porosity under the acidified treatment after a full year cycle. Conversely, an absence of effects on calcification and skeletal microdensity of L. pruvoti exposed to low-pH and high-ST treatments contrasted with a significant decrease in the OM, lipid and protein content of the tissue at high-ST conditions and a 13 % mean increase in the skeletal porosity under low-pH conditions following a full year of exposure. This species-specific response suggests that different internal self-regulation strategies for energy reallocation may allow certain shallow-water azooxanthellate corals to cope more successfully than others with global environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Omega a) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (460-500 µatm CO2, Omega a=1.59), current deep water or surface conditions during upwelling (760 and 1600-1700 µatm CO2, Omega a=1.17 and 0.56), and future deep water or surface conditions during upwelling (2800-3400 µatm CO2, Omega a=0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Omega a, and conducted analyses considering Omega a both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.