919 resultados para Springs (components)
Resumo:
A theoretical model has been developed to investigate the microfluidic transport of the signaling chemicals in the cell coculture chips. Using an epidermal growth factor (EGF)-like growth factor as the sample chemical, the effects of velocities and channel geometry were studied for the continuous-flow microchannel bioreactors. It is found that different perfusion velocities must be applied in the parallel channels to facilitate the communication, i.e., transport of the signaling component, between the coculture channels. Such communication occurs in a unidirectional way because the signaling chemicals can only flow from the high velocity area to the low velocity area. Moreover, the effect of the transport of the signaling component between the coculture channels on the growth of the monolayer cells and the multicellular tumor spheroid (MTS) in the continuous-flow coculture environment were simulated using 3D models. The numerical results demonstrated that the concentration gradients will induce the heterogeneous growth of the cells and the MTSs, which should be taken into account in designing the continuous-flow perfusion bioreactor for the cell coculture research.
Resumo:
The potential energy in materials is well approximated by pair functional which is composed of pair potentials and embedding energy. During calculating material potential energy, the orientational component and the volumetric component are derived respectively from pair potentials and embedding energy. The sum of energy of all these two kinds of components is the material potential. No matter how microstructures change, damage or fracture, at the most level, they are all the changing and breaking atomic bonds. As an abstract of atomic bonds, these components change their stiffness during damaging. Material constitutive equations have been formulated by means of assembling all components' response functions. This material model is called the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, and intrinsic induced anisotropy, etc.
Resumo:
230 p.
Resumo:
We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.