919 resultados para Sports stories.
Resumo:
Mafia waters in the western Indian Ocean on the east coast of Africa is a natural attractive area for fishing. It has extensive coral beds which harbour good fish life and attracts sport fishery in the area. About 12 commercially important fishes listed are caught by sports fishermen. The data indicates that this area can become an attractive centre for sports fishery almost throughout the year with peak season from November to February. Long-term planning of the fishery is necessary. The conservation measures should be evolved and gan fishing, dynamiting or any other kind of distructive fishing should be prohibited. This area has natural potential to become a sports fishing centre in the future and a great attraction for tourists and anglers.
Resumo:
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities.
Resumo:
Lavallee, D. (2005). The effect of a life development intervention on sports career transition adjustment. The Sport Psychologist. 19(2), pp.193-202 RAE2008
Resumo:
http://www.archive.org/details/missionaryheroes00unknuoft
Resumo:
http://www.canadiana.org/ECO/ItemRecord/30577 View document online
Resumo:
http://www.archive.org/details/bypathstoforgott00haynrich
Resumo:
http://www.archive.org/details/howfartotheneare012020mbp
Resumo:
A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.
Resumo:
Traditional motion capture techniques, for instance, those employing optical technology, have long been used in the area of rehabilitation, sports medicine and performance analysis, where accurately capturing bio-mechanical data is of crucial importance. However their size, cost, complexity and lack of portability mean that their use is often impractical. Low cost MEMS inertial sensors when combined and assembled into a Wireless Inertial Measurement Unit (WIMU) present a possible solution for low cost and highly portable motion capture. However due to the large variability inherent to MEMS sensors, such a system would need extensive characterization to calibrate each sensor and ensure good quality data capture. A completely calibrated WIMU system would allow for motion capture in a wider range of real-world, non-laboratory based applications. Calibration can be a complex task, particularly for newer, multi-sensing range capable inertial sensors. As such we present an automated system for quickly and easily calibrating inertial sensors in a packaged WIMU, demonstrating some of the improvements in accuracy attainable.