966 resultados para Spore
Resumo:
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.
Resumo:
The black spot of citrus (Citrus sp.) is caused by Guignardia citricarpa with ascospore production depending on temperature, leaf wetness, and rainfall. The number of ascospores produced was monitored using a spore trap and climatic factors were recorded using an automated meteorological station of 'Natal' and 'Valencia' sweet orange (Citrus sinensis) orchards in Mogi Guaçu in the state of São Paulo, Brazil, from November 2000 to March 2001. The fruits were bagged to prevent infection and the bags removed from different sets of fruit for one week during each of the 18 weeks of the season in both orchards. Ascospores were produced during the entire experimental period, from spring through summer, primarily after rain events. In both orchards, ascospore production reached a peak in January and February. Ascospore production was related to leaf wetness only in the Natal orange orchard but was not related to total rainfall or temperature in either orchard. Disease was most severe on fruit exposed the 7th, 8th, and 13th weeks after beginning the experiment in both cultivars as well as after the 16th week for 'Natal'. There was a strong relationship between disease severity and total rainfall for both orchards and a weak correlation between temperature and severity in the 'Natal' block only. There was no relationship between severity and leaf wetness or ascospore numbers.
Resumo:
The aim of this study was to examine suitability of BimTwin cleaning concept in card board machine to control microbiological activity and describe microbiological balance of the machine. In a review of literature is examined microbe and spore caused problems in paper industry. Biggest problems are deposits, which decrease runnability and cause quality errors. In this chapter is also introduced most common oxidizing biocides used in paper industry and described ATP assay as a microbiological monitoring method. In an experimental part are included BimTwin mill trial results, chemical condition monitoring methods and microbiological balance in a card board machine. In a second part are examined possibilities to effect hygiene of card board by chemical treatment of the surface size and coating. Result showed that BimTwin concept is suitable for card board machine as a cleaning concept, when chemical dosing is fitted right. For proper dosing and secure tolerable hygiene level, chemical and microbiological monitoring is significant. Determining of the microbiological balance would have need more sampling. According to acquired results, broke turned out to be the biggest microbe source. Sizing and coating experiments showed that it is possible to improve hygiene of card board by chemically treated surface size and coating color.
Resumo:
Studies on the genetic variability of Puccinia triticina in inoculum collected in Brazil started in 1941 with Vallega (20). The pioneering work in Brazil dates from 1949 (16) at "Instituto Agronômico do Sul", Ministry of Agriculture (MA), in Pelotas, Rio Grande do Sul State (RS), and continued after 1975 at Embrapa Wheat in Passo Fundo, RS. In 2002, analyses for the identification of P. triticina races continued at OR Seed breeding, simultaneously to Embrapa's program, both in Passo Fundo. The investigators involved in the identification of races in Brazil were Ady Raul da Silva in Pelotas (MA), Eliza Coelho in Pelotas (MA) and in Passo Fundo (Embrapa), Amarilis Labes Barcellos in Pelotas (MA) and in Passo Fundo (Embrapa and OR), Camila Turra in Passo Fundo (OR) and Marcia Chaves in Passo Fundo (Embrapa). From 1979 to 2010 growing season, 59 races were determined, according to the differentiation based on the expression of each Lr resistance gene. On average, one to three new races are detected per year. Research has focused on the use of vertical resistance; however, lately some institutes have searched more durable resistance, of the adult-plant type (horizontal, less race-specific). The uninterrupted monitoring of the wheat rust pathogenic population in Brazil during so many decades allowed the understanding of the evolution and virulence of races. The use of international nomenclature adopted by some programs has allowed the comparison of the fungus variability in Brazil with that in other countries, especially where frontiers are not barriers for spore transportation, confirmed by the occurrence of the same races all over one region.
Resumo:
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, was reported at epidemic levels in 2003/2004 and is the main soybean disease in Brazil. The aim of this study was to investigate the spread of Asian soybean rust and to quantify airborne urediniospores in the region of Campo Mourão, Paraná State, Brazil. Three experiments were conducted under field conditions during the 2007/08 and 2008/09 crop seasons. Using the disease gradient method, provided by the application of increasing levels of the fungicide tebuconazole, four Asian soybean rust epidemics at different intensities were obtained in each experiment. To quantify the urediniospores, weathercock-type spore collectors were installed during and between the two crop seasons. Disease progress curves were plotted for each epidemic, and maximum severity was estimated. The curves were fit to the logistic model, which provided higher coefficients of determination and more randomly distributed residuals plotted over time. Analyses of the area under the disease progress curve showed that the largest epidemics occurred in the 2007/2008 crop season and that the progress rates were higher for severity, even among plants protected with the fungicide. The number of urediniospores collected in the air was related to the presence of soybean plants in the cultivated crops. The quantity of urediniospores was also positively correlated to the disease severity and incidence, as well as to cumulative rainfall and favorable days for P. Pachyrhizi infection.
Resumo:
In Brazil, Fusarium head blight (FHB) affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50) of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI) fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .
Resumo:
In vitro experiments were conducted to assess the effects of substrate, temperature and time of exposure to temperature and photoperiod on P. pachyrhizi uredospore germination and germ tube growth. The following substrates were tested: water-agar and soybean leaf extract-agar at different leaf concentrations (0.5, 1.0, 2.0 and 4.0 g of leaves and 15g agar/L water), temperatures (10, 15, 20, 25, 30, and 35oC) and times of exposure (1, 2, 3, 4, 5, 6, 7, and 8 hours) to temperature and 12 different photoperiods. The highest germination and germ tube length was found for the soybean leaf extract agar. Maximum P. pachyrhizi uredospore germination was obtained at 21.8 and 22.3°C, and maximum germ tube growth at 21.4 and 22.1°C. The maximum uredospore germination was found at 6.4 hours exposure, while the maximum germ tube length was obtained at 7.7 h exposure. Regarding photoperiod, the maximum spore germination and the maximum uredospore germ tube length were found in the dark. Neither spore germination nor uredospore germ tube growth was completely inhibited by the exposure to continuous light.
Resumo:
Ramularia blight, caused by Ramularia areola, is one of the most important diseases affecting cotton crop in Brazil. For its effective control, 5-9 fungicide applications on susceptible cultivars are necessary. The aim of the present study was to evaluate, in vitro and in vivo, the sporulation potential of R. areolaisolates from different Brazilian regions at distinct temperatures. Spore production was assessed in the laboratory and under green house conditions by using leaves from plants of eight cotton cultivars. The in vitro results indicated that the potential of spore production was dependent on temperature. Maximum sporulation of the fungus occurred at 17°C for isolates from São Paulo State and 23°C for isolates from Goiás and Mato Grosso States. In the in vivo study, there was a variation in spore production according to the cultivar and the isolate. Most isolates showed to be highly aggressive on cultivars FM966 LL and DELTAOPAL. The obtained results suggest a more rational use of fungicides and cultivars with decreased fungal sporulation and can form the basis for further studies of the pathogenic variability of this fungus in cotton crops in Brazil. This is the first report on the sporulation potential of Brazilian R. areola isolates.
Resumo:
Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS). A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50). However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.
Resumo:
In order to determine thermobacteriological parameters for B. stearothermophilus spores, they were diluted in a saline solution medium and in ground corn-soybean mix, distributed in TDT tube, and submitted to heat for a specific period of time. The D value (time to reduce 1 log cycle of microbial count under a certain temperature) and z value (variation of temperature to cause 10-fold change in D value) were estimated. To estimate their dimensions, the spores were visualized by using a scanning electron microscope. D121.1 ºC and z values for these spores, as determined in the saline solution, were 8.8 minutes and 12.8 ºC, respectively. D121,1 ºC and z values determined in the corn-soy mix were 14.2 minutes and 23.7 ºC, respectively. The micrographs indicated that the spores have homogeneous shape and size, with length and diameter of 2 and 1 µm, respectively. These results confirm that the spore is highly thermal-resistant, and it is a good biological indicator to evaluate the extrusion process as a feed sterilizer.
Resumo:
The aim of this experiment was to evaluate how susceptible spores become to mechanical damage during food extrusion after being submitted to CO2. B. stearothermophilus spores sowed to corn and soy mix were submitted to 99% CO2 for 10 days and extruded in a single-screw extruder. The treatments were: T1 - spore-containing samples, extruded at screw rotational speed of 65 rpm and barrel wall temperature of 80 °C; T2 - as T1, except for screw rotational speed of 150 rpm; and T3 - as T2, except that samples were submitted to the modified atmosphere. The results for cell viability, minimum and maximum residence times, and static pressure were T1 - 19.90 ± 3.24%, 123.3 ± 14.50 seconds; 203.3 ± 14.05 seconds; 2.217 ± 62 kPa; T2 - 21.42 ± 8.24%, 70.00 ± 5.77 seconds; 170.00 ± 4.67 seconds; 2.310 ± 107 kPa; and T3 - 11.06 ± 2.46%, 86.00 ± 7.23 seconds; 186.00 ± 7.50 seconds; 2.403 ± 93 kPa, respectively. It was concluded that the extrusion process did reduce the cell count. However, screw rotational speed variation or CO2 pre-treatment did not affect cell viability.
Resumo:
This work aims to evaluate deoxynivalenol degradation by Aspergillus oryzae and Rhizopus oryzae in a submerged fermentation system and to correlate it to the activity of oxydo-reductase enzymes. The submerged medium consisted of sterile distilled water contaminated with 50 μg of DON and 4 × 10(6) spore.mL-1 inoculum of Aspergillus oryzae and Rhizopus oryzae species, respectively in each experiment. Sampling was performed every 24 hours for monitoring the peroxidase specific activity, and every 48 hours for determining mycotoxin levels. Results showed that the fungi species were able to decrease DON levels as the peroxidase activity increased. The 48 hours fermentation interval presented the highest peroxidase specific activity (ΔABS/minute.μg.protein-1), 800 and 198, while the highest DON degradation velocity was 10.8 and 12.4 ppb/hour, respectively in both cases for Rhizopus oryzae and Aspergillus oryzae.
Resumo:
Abstract Essential oils (EO) of eucalyptus (Eucalyptus globulus L.), thymus (Thymus capitatus L.) pirul (Schinus molle L.) were evaluated for their efficacy to control Aspergillus parasiticus and Fusarium moniliforme growth and their ability to produce mycotoxins. Data from kinetics radial growth was used to obtain the half maximal inhibitory concentration (IC50). The IC50 was used to evaluate spore germination kinetic and mycotoxin production. Also, spore viability was evaluated by the MTT assay. All EO had an effect on the radial growth of both species. After 96 h of incubation, thymus EO at concentrations of 1000 and 2500 µL L–1 totally inhibited the growth of F. moniliforme and A. parasiticus, respectively. Eucalyptus and thymus EO significantly reduced spore germination of A. parasiticus. Inhibition of spore germination of F. moniliforme was 84.6, 34.0, and 30.6% when exposed to eucalyptus, pirul, and thymus EO, respectively. Thymus and eucalyptus EO reduced aflatoxin (4%) and fumonisin (31%) production, respectively. Spore viability was affected when oils concentration increased, being the thymus EO the one that reduced proliferation of both fungi. Our findings suggest that EO affect F. moniliforme and A. parasiticus development and mycotoxin production.
Resumo:
A mycoparasite, Piptocephalis virginiana ^ shows a resemblance to fungal parasites of higher plants in the fine structure of hyphae and haustoria. The morphology and fine structure of host and parasitic fungi have been described. The mode of penetration of the host cell, Choanephora cucurbitarum , probably involves mechanical forces. Although the presence of cell wall degrading enzyme was not detected by conventional techniques, its role in penetration can't be ruled out. A collar around the haustorial neck is formed as an extension of the host cell wall. No papilla was detected although appressorixim was seen during penetration. The young haustorium is enclosed in highly invaginating plasmalemma of the host cell and n\imerous cisternae of endoplasmic reticulum. Appearance of an electron—dense sheath around the mature haustorium seems to coincide with the disappearance of cisternae of endoplasmic reticulum from the host cystoplasm in the vicinity of the haustorium. The role of host cytoplasm particularly of endoplasmic reticulum in the development of the sheath is discussed. Extensive accumulation of spherosomes-like bodies, containing lipids, is found in haustorium, parasite and host hypha. Electron microscope revealed the parasiticculture spore has more lipid content than the axenic culture spore of P. virginiana . The biochemical and cytochemical tests also support these results. The mature spore of C. cucurbitarum possesses a thick three-layered cell wall, different from the hyphal wall. Its germination is accompanied by the formation of an elastic thin inner layer which surrounds the emerging germ tube and the growing hypha. High resolution autoradiography showed that H N-acetyl-glucosamine , a precursor of chitin, was incorporated preferentially in the thin inner layer of the spore wall and also in the cell wall of the growing hypha. When the label was fed to the infected cells, at different intervals after inoculation, grains were observed on the sheath which developed around the haustorium of P. virginiana , 30 hours after inoculation. The significance of these results in relation to the origin and composition of the sheath is discussed.
Resumo:
This investigation comprises three parts: (1) the source, mechanism of transport, and distribution of pollen, spores and other palynomorphs in Georgian Bay bottom sediments and a comparison of these data with the contemporary vegetation, (2) the relative significance of fluvial transportation of pollen and spores, and (3) the late- and postglacial history of vegetational and climatic changes in the Georgicin Bay region. Modem pollen and spore assemblages in Georgian Bay do reflect the surrovinding vegetation when preservation and pollen production by the different species are considered and accounted for. Relative pollen percentage and concentration isopoll patterns indicate that rivers contribute large quantities of pollen and spores to Georgian Bay. This is further substantiated by large amounts of pollen and spores which were caught in traps in the Moon, Muskoka, and Nottawasaga Rivers which flow into Georgian Bay. The majority of pollen and spores caught in these traps were washed into the rivers by surface water runoff and so reflect the vegetation of the watershed in a regional sense. In a 12.9 metre long sediment core from northeastern Georgian Bay the relative percentage and absolute pollen concentrations allow correlation of Georgian Bay Lake phases with climatic and forest history. Four distinct pollen zones are distinguished: zone GB IV which is the oldest, reflects the succession from open spruce woodland to boreal forest; zone GB III represents a period of pine-mixed hardwoods forests from about 10,000 to 7,500 years ago. A pine-maplehemlock association dominated in zone GB II, although during the culmination of postglacial warming about 4,000 to 5,000 years ago the Georgian Bay forests had a more deciduous character. Zone GB I clearly shows European man's disturbance of the forest by logging activities.