896 resultados para Specific Pathogen-Free Organisms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus-host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The data of this paper differ from the Jones and Bradley papers [of 1982-1986] in that it represents an attempt to select thermal pollution free records rather than to include all available records. The specific long-term trends that this paper is trying to avoid are those illustrated by the heat islands of fast growing urban locations. One other major difference in this paper is that all of the records reported of this study are complete for the entire study period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nostoc sphaeroides Kuetzing has been used as a traditional medicine in China to treat a variety of ailments. This research identified the antioxidant activities of polysaccharide extract from Nostoc sphaeroides. The extract, which contains 46.2% carbohydrates, exhibited an effective scavenging capability on superoxide radical, hydroxyl radicals in non site-specific as well as site-specific assays, and also performed lipid peroxidation inhibition in a dose-dependent manner. Polysaccharide extract had no 1,1-diphenyl-2-picrylhydrazyl radical scavenging potential at all test concentrations. Activities of superoxide dismutase, catalase, and glutathione peroxidase in human embryo kidney 293 cells were increased effectively when Nostoc sphaeroides extract was applied. These results suggested that the use of N. sphaeroides in treating ailments may be based on the antioxidant capacities of polysaccharide composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detecting objects in their paths is a fundamental perceptional function of moving organisms. Potential risks and rewards, such as prey, predators, conspecifics or non-biological obstacles, must be detected so that an animal can modify its behaviour accordingly. However, to date few studies have considered how animals in the wild focus their attention. Dolphins and porpoises are known to actively use sonar or echolocation. A newly developed miniature data logger attached to a porpoise allows for individual recording of acoustical search efforts and inspection distance based on echolocation. In this study, we analysed the biosonar behaviour of eight free-ranging finless porpoises (Neophocaena phocaenoides) and demonstrated that these animals inspect the area ahead of them before swimming silently into it. The porpoises inspected distances up to 77 in, whereas their swimming distance without using sonar was less than 20 in. The inspection distance was long enough to ensure a wide safety margin before facing real risks or rewards. Once a potential prey item was detected, porpoises adjusted their inspection distance from the remote target throughout their approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Narrow stripe selective growth of oxide-free InGaAlAs/InGaAlAs multiple quantum wells (MQWs) has been successfully performed on patterned InP substrates by ultra-low pressure MOVPE. Flat and clear interfaces were obtained for the narrow stripe selectively grown MQWs under optimized growth conditions. These selectively grown MQWs were covered by specific InP layers, which can keep the MQWs from being oxidized during the fabrication of the devices. The characteristics of selectively grown MQWs were strongly dependent on the mask stripe width. In particular, a PL peak wavelength shift of 73 nm, a PL intensity of more than 57% and a PL FWHM of less than 102 meV were observed simultaneously with a small mask stripe width varying from 0 to 40 mu m. The results were explained by considering the migration effect from the masked region (MMR) and the lateral vapour diffusion effect (LVD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of the planktonic unicellular algae [phytoplankton), the benthic unicellular algae [microphytobenthos) and the benthic multicellular algae (macrophytobenthos) to the primary production of the world ocean are evaluated, together with the respective limitations regarding data, concepts and methods. The use of “free-water” methods (e.g. in situ oxygen or CO2 budgets) is recommended in complement to the more specific measurements on enclosed organisms. For phytoplankton, a previous estimate of 30 . lo9 t C y-’ is retained as a minimal estimate. Earlier estimates of the world benthic production have been based on indirect calculations; revised estimates are suggested here which still lack precision but rely on the actual measurements available at present. Primary production of the micro- and macrobenthic algae amount to 50 and 375 g C m-? y-’ respectively as averages for the whole photic layer they can colonize, and total 2.9 . 10‘ t C y-’ for the world ocean. Thus, benthic algae contribute some 10% of the total marine primary production. On the continental shelf alone, the contributions of benthic and planktonib algae are commensurate and nearly equivalent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linking organisms or groups of organisms to specific functions within natural environments is a fundamental challenge in microbial ecology. Advances in technology for manipulating and analyzing nucleic acids have made it possible to characterize the members of microbial communities without the intervention of laboratory culturing. Results from such studies have shown that the vast majority of soil organisms have never been cultured, highlighting the risks of culture-based approaches in community analysis. The development of culture-independent techniques for following the flow of substrates through microbial communities therefore represents an important advance. These techniques, collectively known as stable isotope probing (SIP), involve introducing a stable isotope-labeled substrate into a microbial community and following the fate of the substrate by extracting diagnostic molecular species such as fatty acids and nucleic acids from the community and determining which specific molecules have incorporated the isotope. The molecules in which the isotope label appears provide identifying information about the organism that incorporated the substrate. Stable isotope probing allows direct observations of substrate assimilation in minimally disturbed communities, and thus represents an exciting new tool for linking microbial identity and function. The use of lipids or nucleic acids as the diagnostic molecule brings different strengths and weaknesses to the experimental approach, and necessitates the use of significantly different instrumentation and analytical techniques. This short review provides an overview of the lipid and nucleic acid approaches, discusses their strengths and weaknesses, gives examples of applications in various settings, and looks at prospects for the future of SIP technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/ AgCl), while Tym. was detected well on a platinum electrode at 1. 3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym. detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym. by the aptamers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes-GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.