938 resultados para Spatial working memory
Resumo:
A paradox of memory research is that repeated checking results in a decrease in memory certainty, memory vividness and confidence [van den Hout, M. A., & Kindt, M. (2003a). Phenomenological validity of an OCD-memory model and the remember/know distinction. Behaviour Research and Therapy, 41, 369–378; van den Hout, M. A., & Kindt, M. (2003b). Repeated checking causes memory distrust. Behaviour Research and Therapy, 41, 301–316]. Although these findings have been mainly attributed to changes in episodic long-term memory, it has been suggested [Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323] that representations in working memory could already suffer from detrimental checking. In two experiments we set out to test this hypothesis by employing a delayed-match-to-sample working memory task. Letters had to be remembered in their correct locations, a task that was designed to engage the episodic short-term buffer of working memory [Baddeley, A. D. (2000). The episodic buffer: a new component in working memory? Trends in Cognitive Sciences, 4, 417–423]. Of most importance, we introduced an intermediate distractor question that was prone to induce frustrating and unnecessary checking on trials where no correct answer was possible. Reaction times and confidence ratings on the actual memory test of these trials confirmed the success of this manipulation. Most importantly, high checkers [cf. VOCI; Thordarson, D. S., Radomsky, A. S., Rachman, S., Shafran, R, Sawchuk, C. N., & Hakstian, A. R. (2004). The Vancouver obsessional compulsive inventory (VOCI). Behaviour Research and Therapy, 42(11), 1289–1314] were less accurate than low checkers when frustrating checking was induced, especially if the experimental context actually emphasized the irrelevance of the misleading question. The clinical relevance of this result was substantiated by means of an extreme groups comparison across the two studies. The findings are discussed in the context of detrimental checking and lack of distractor inhibition as a way of weakening fragile bindings within the episodic short-term buffer of Baddeley's (2000) model. Clinical implications, limitations and future research are considered.
Resumo:
Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.
Resumo:
Background - Not only is compulsive checking the most common symptom in Obsessive Compulsive Disorder (OCD) with an estimated prevalence of 50–80% in patients, but approximately ~15% of the general population reveal subclinical checking tendencies that impact negatively on their performance in daily activities. Therefore, it is critical to understand how checking affects attention and memory in clinical as well as subclinical checkers. Eye fixations are commonly used as indicators for the distribution of attention but research in OCD has revealed mixed results at best. Methodology/Principal Finding - Here we report atypical eye movement patterns in subclinical checkers during an ecologically valid working memory (WM) manipulation. Our key manipulation was to present an intermediate probe during the delay period of the memory task, explicitly asking for the location of a letter, which, however, had not been part of the encoding set (i.e., misleading participants). Using eye movement measures we now provide evidence that high checkers’ inhibitory impairments for misleading information results in them checking the contents of WM in an atypical manner. Checkers fixate more often and for longer when misleading information is presented than non-checkers. Specifically, checkers spend more time checking stimulus locations as well as locations that had actually been empty during encoding. Conclusions/Significance - We conclude that these atypical eye movement patterns directly reflect internal checking of memory contents and we discuss the implications of our findings for the interpretation of behavioural and neuropsychological data. In addition our results highlight the importance of ecologically valid methodology for revealing the impact of detrimental attention and memory checking on eye movement patterns.
Resumo:
Compulsive checking is known to influence memory, yet there is little consideration of checking as a cognitive style within the typical population. We employed a working memory task where letters had to be remembered in their locations. The key experimental manipulation was to induce repeated checking after encoding by asking about a stimulus that had not been presented. We recorded the effect that such misleading probes had on a subsequent memory test. Participants drawn from the typical population but who scored highly on a checking-scale had poorer memory and less confidence than low scoring individuals. While thoroughness is regarded as a quality, our results indicate that a cognitive style that favours repeated checking does not always lead to the best performance as it can undermine the authenticity of memory traces. This may affect various aspects of everyday life including the work environment and we discuss its implications and possible counter-measures. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
We previously showed that working memory (WM) performance of subclinical checkers can be affected if they are presented with irrelevant but misleading information during the retention period (Harkin and Kessler, 2009, 2011). The present study differed from our previous research in the three crucial aspects. Firstly, we employed ecologically valid stimuli in form of electrical kitchen appliances on a kitchen countertop in order to address previous criticism of our research with letters in locations as these may not have tapped into the primary concerns of checkers. Secondly, we tested whether these ecological stimuli would allow us to employ a simpler (un-blocked) design while obtaining similarly robust results. Thirdly, in Experiment 2 we improved the measure of confidence as a metacognitive variable by using a quantitative scale (0–100), which indeed revealed more robust effects that were quantitatively related to accuracy of performance. The task in the present study was to memorize four appliances, including their states (on/off), and their locations on the kitchen countertop. Memory accuracy was tested for the states of appliances in Experiment 1, and for their locations in Experiment 2. Intermediate probes were identical in both experiments and were administered during retention on 66.7% of the trials with 50% resolvable and 50% irresolvable/misleading probes. Experiment 1 revealed the efficacy of the employed stimuli by revealing a general impairment of high- compared to low checkers, which confirmed the ecological validity of our stimuli. In Experiment 2 we observed the expected, more differentiated pattern: High checkers were not generally affected in their WM performance (i.e., no general capacity issue); instead they showed a particular impairment in the misleading distractor-probe condition. Also, high checkers’ confidence ratings were indicative of a general impairment in metacognitive functioning. We discuss how specific executive dysfunction and general metacognitive impairment may affect memory traces in the short- and in the long-term.
Resumo:
Despite the large body of research regarding the role of memory in OCD, the results are described as mixed at best (Hermans et al., 2008). For example, inconsistent findings have been reported with respect to basic capacity, intact verbal, and generally affected visuospatial memory. We suggest that this is due to the traditional pursuit of OCD memory impairment as one of the general capacity and/or domain specificity (visuospatial vs. verbal). In contrast, we conclude from our experiments (i.e., Harkin & Kessler, 2009, 2011; Harkin, Rutherford, & Kessler, 2011) and recent literature (e.g., Greisberg & McKay, 2003) that OCD memory impairment is secondary to executive dysfunction, and more specifically we identify three common factors (EBL: Executive-functioning efficiency, Binding complexity, and memory Load) that we generalize to 58 experimental findings from 46 OCD memory studies. As a result we explain otherwise inconsistent research – e.g., intact vs. deficient verbal memory – that are difficult to reconcile within a capacity or domain specific perspective. We conclude by discussing the relationship between our account and others', which in most cases is complementary rather than contradictory.
Resumo:
Single cell recordings in monkeys support the notion that the lateral prefrontal cortex (PFC) controls reactivation of visual working memory representations when rehearsal is disrupted. In contrast, recent fMRI findings yielded a double dissociation for PFC and the medial temporal lobe (MTL) in a letter working memory task. PFC was engaged in interference protection during reactivation while MTL was prominently involved in the retrieval of the letter representations. We present event-related potential data (ERP) that support PFC involvement in the top-down control of reactivation during a visual working memory task with endogenously triggered recovery after visual interference. A differentiating view is proposed for the role of PFC in working memory with respect to endogenous/exogenous control and to stimulus type. General implications for binding and retention mechanisms are discussed.
Resumo:
Peer reviewed
Memory-Based Attentional Guidance: A Window to the Relationship between Working Memory and Attention
Resumo:
Attention, the cognitive means by which we prioritize the processing of a subset of information, is necessary for operating efficiently and effectively in the world. Thus, a critical theoretical question is how information is selected. In the visual domain, working memory (WM)—which refers to the short-term maintenance and manipulation of information that is no longer accessible by the senses—has been highlighted as an important determinant of what is selected by visual attention. Furthermore, although WM and attention have traditionally been conceived as separate cognitive constructs, an abundance of behavioral and neural evidence indicates that these two domains are in fact intertwined and overlapping. The aim of this dissertation is to better understand the nature of WM and attention, primarily through the phenomenon of memory-based attentional guidance, whereby the active maintenance of items in visual WM reliably biases the deployment of attention to memory-matching items in the visual environment. The research presented here employs a combination of behavioral, functional imaging, and computational modeling techniques that address: (1) WM guidance effects with respect to the traditional dichotomy of top-down versus bottom-up attentional control; (2) under what circumstances the contents of WM impact visual attention; and (3) the broader hypothesis of a predictive and competitive interaction between WM and attention. Collectively, these empirical findings reveal the importance of WM as a distinct factor in attentional control and support current models of multiple-state WM, which may have broader implications for how we select and maintain information.
Resumo:
Two novel studies examining the capacity and characteristics of working memory for object weights, experienced through lifting, were completed. Both studies employed visually identical objects of varying weight and focused on memories linking object locations and weights. Whereas numerous studies have examined the capacity of visual working memory, the capacity of sensorimotor memory involved in motor control and object manipulation has not yet been explored. In addition to assessing working memory for object weights using an explicit perceptual test, we also assessed memory for weight using an implicit measure based on motor performance. The vertical lifting or LF and the horizontal GF applied during lifts, measured from force sensors embedded in the object handles, were used to assess participants’ ability to predict object weights. In Experiment 1, participants were presented with sets of 3, 4, 5, 7 or 9 objects. They lifted each object in the set and then repeated this procedure 10 times with the objects lifted either in a fixed or random order. Sensorimotor memory was examined by assessing, as a function of object set size, how lifting forces changed across successive lifts of a given object. The results indicated that force scaling for weight improved across the repetitions of lifts, and was better for smaller set sizes when compared to the larger set sizes, with the latter effect being clearest when objects were lifting in a random order. However, in general the observed force scaling was poorly scaled. In Experiment 2, working memory was examined in two ways: by determining participants’ ability to detect a change in the weight of one of 3 to 6 objects lifted twice, and by simultaneously measuring the fingertip forces applied when lifting the objects. The results showed that, even when presented with 6 objects, participants were extremely accurate in explicitly detecting which object changed weight. In addition, force scaling for object weight, which was generally quite weak, was similar across set sizes. Thus, a capacity limit less than 6 was not found for either the explicit or implicit measures collected.
Resumo:
Stein and colleagues argue there is no yet conclusive evidence for nonconscious working memory (WM) and that is critical to probe WM while ensuring null sensitivity to memory cues. While this stringent approach reduces the likelihood of nonconscious signaling for WM, we discuss existing work meeting this null sensitivity criteria, and, related work on nonconscious cognition in keeping with WM/awareness dissociations on the basis of a functional operational definition of WM. Further, because it is likely that WM is a nonunitary functional construct and visual awareness a gradual phenomenon, we propose that delineating the neural mechanisms for distinct WM types across different levels of awareness may prove the most fruitful approach for understanding the interplay between WM and consciousness.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.
Resumo:
Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.