986 resultados para Spatial database
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Resumo:
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
Resumo:
This work details the results of a face authentication test (FAT2004) (http://www.ee.surrey.ac.uk/banca/icpr2004) held in conjunction with the 17th International Conference on Pattern Recognition. The contest was held on the publicly available BANCA database (http://www.ee.surrey.ac.uk/banca) according to a defined protocol (E. Bailly-Bailliere et al., June 2003). The competition also had a sequestered part in which institutions had to submit their algorithms for independent testing. 13 different verification algorithms from 10 institutions submitted results. Also, a standard set of face recognition software packages from the Internet (http://www.cs.colostate.edu/evalfacerec) were used to provide a baseline performance measure.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
Background: Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results: A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes.
Resumo:
One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.