931 resultados para Spatial conditional autoregressive model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the efficiency of multivariate macroeconomic forecasts by estimating a vector autoregressive model on the forecast revisions of four variables (GDP, inflation, unemployment and wages). Using a data set of professional forecasts for the G7 countries, we find evidence of cross‐series revision dynamics. Specifically, forecasts revisions are conditionally correlated to the lagged forecast revisions of other macroeconomic variables, and the sign of the correlation is as predicted by conventional economic theory. This indicates that forecasters are slow to incorporate news across variables. We show that this finding can be explained by forecast underreaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceived accessibility has been acknowledged as an important aspect of transport policy since the 70s. Nevertheless, very few empirical studies have been conducted in this field. When aiming to improve social inclusion, by making sus-tainable transport modes accessible to all, it is important to understand the factors driving perceived accessibility. Un-like conventional accessibility measures, perceived accessibility focuses on the perceived possibilities and ease of en-gaging in preferred activities using different transport modes. We define perceived accessibility in terms of how easy it is to live a satisfactory life with the help of the transport system, which is not necessarily the same thing as the objec-tive standard of the system. According to previous research, perceived accessibility varies with the subjectively-rated quality of the mode of transport. Thus, improvements in quality (e.g. trip planning, comfort, or safety) increase the per-ceived accessibility and make life easier to live using the chosen mode of transport. This study (n=750) focuses on the perceived accessibility of public transport, captured using the Perceived Accessibility Scale PAC (Lättman, Olsson, & Fri-man, 2015). More specifically, this study aims to determine how level of quality affects the perceived accessibility in public transport. A Conditional Process Model shows that, in addition to quality, feeling safe and frequency of travel are important predictors of perceived accessibility. Furthermore, elderly and those in their thirties report a lower level of perceived accessibility to their day-to-day activities using public transport. The basic premise of this study is that sub-jective experiences may be as important as objective indicators when planning and designing for socially inclusive transport systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le malattie rare pongono diversi scogli ai pazienti, ai loro familiari e ai sanitari. Uno fra questi è la mancanza di informazione che deriva dall'assenza di fonti sicure e semplici da consultare su aspetti dell'esperienza del paziente. Il lavoro presentato ha lo scopo di generare da set termini correlati semanticamente, delle frasi che abbiamo la capacità di spiegare il legame fra di essi e aggiungere informazioni utili e veritiere in un linguaggio semplice e comprensibile. Il problema affrontato oggigiorno non è ben documentato in letteratura e rappresenta una sfida interessante si per complessità che per mancanza di dataset per l'addestramento. Questo tipo di task, come altri di NLP, è affrontabile solo con modelli sempre più potenti ma che richiedono risorse sempre più elevate. Per questo motivo, è stato utilizzato il meccanismo di recente pubblicazione del Performer, dimostrando di riuscire a mantenere uno stesso grado di accuratezza e di qualità delle frasi prodotte, con una parallela riduzione delle risorse utilizzate. Ciò apre la strada all'utilizzo delle reti neurali più recenti anche senza avere i centri di calcolo delle multinazionali. Il modello proposto dunque è in grado di generare frasi che illustrano le relazioni semantiche di termini estratti da un mole di documenti testuali, permettendo di generare dei riassunti dell'informazione e della conoscenza estratta da essi e renderla facilmente accessibile e comprensibile al pazienti o a persone non esperte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering different perspectives, the scope of this thesis is to investigate how to improve healthcare resources allocation and the provision efficiency for hip surgeries, a resource-intensive operation, among the most frequently performed on the elderly, with a trend in volume that is increasing in years due to population aging. Firstly, the effect of Time-To-Surgery (TTS) on mortality for hip fracture patients is investigated. The analysis attempts to account for TTS endogeneity due to the inability to fully control for variables affecting patient delay – e.g. patient severity. Exploiting an instrumental variable model, where being admitted on Friday or Saturday predicts longer TTS, findings show exogenous TTS does not have a significant effect on mortality. Thus suggesting surgeons prioritize patients effectively, neutralizing the adverse impact of longer TTS. Then, the volume-outcome relation for total hip replacement surgery is analyzed, seeking to account for selective referral, which may be present in elective surgery context, and induce reverse causality issue in the volume-outcome relation. The analysis employs a conditional choice model where patient travel distance from all regions' hospitals is used as a hospital choice predictor. Findings show the exogenous hospital volume significantly decreases adverse outcomes probability, especially in the short run. Finally, the change in public procurement design enforced in the Romagna LHA (Italy) is exploited to assess its impact on hip prostheses cost, surgeons' implant choice, and patient health outcomes. Hip prostheses are the major cost-driver of hip replacement surgeries, hence it is crucial to design the public tender such that implant prices are minimized, but cost-containment policies have to be weighted with patient well-being. Evidence shows that a cost reduction occurred without a significant surgeons’ choices impact. Positive or no effect of surgeons specialization is found on patients outcomes after the new procurement introduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This article proposes a new model for autoregressive conditional heteroscedasticity and kurtosis. Via a time-varying degrees of freedom parameter, the conditional variance and conditional kurtosis are permitted to evolve separately. The model uses only the standard Student’s t-density and consequently can be estimated simply using maximum likelihood. The method is applied to a set of four daily financial asset return series comprising U.S. and U.K. stocks and bonds, and significant evidence in favor of the presence of autoregressive conditional kurtosis is observed. Various extensions to the basic model are proposed, and we show that the response of kurtosis to good and bad news is not significantly asymmetric.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015). 13 to 17, Apr, 2015, Embedded Systems. Salamanca, Spain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accessibility is nowadays an important issue for the development of cities. It is seen as a priority in order toguarantee equal access to fundamental rights, to improve the quality of life of citizens and to ensure that everyone, regardless of age, mobility or ability, have equal access to all the resources and benefits cities have to offer. Consequently, factors closely related to the accessibility have gained a higher relevance for identifying and assessing the location of urban facilities. The main goal of the paper is to present an accessibility evaluation model applied in Santarém, in Brazil, a city located midway between the larger cities of Belem and Manaus. The research instruments, sampling method and data analysis proposed for mapping urban accessibility are described. Daily activities were used to identify and group key destinations. The model was implemented within a geographic information system and integrates the individualâ s perspective through the definition of each key destination weight, reflecting their significance for daily activities in the urban area. Accessibility to key destinations was mapped over 24 districts of the city of Santarém. The results of this model application can support city administration decision-making for new investments in order to improve urban quality of life.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we attempt to give a theoretical underpinning to the well established empirical stylized fact that asset returns in general and the spot FOREX returns in particular display predictable volatility characteristics. Adopting Moore and Roche s habit persistence version of Lucas model we nd that both the innovation in the spot FOREX return and the FOREX return itself follow "ARCH" style processes. Using the impulse response functions (IRFs) we show that the baseline simulated FOREX series has "ARCH" properties in the quarterly frequency that match well the "ARCH" properties of the empirical monthly estimations in that when we scale the x-axis to synchronize the monthly and quarterly responses we find similar impulse responses to one unit shock in variance. The IRFs for the ARCH processes we estimate "look the same" with an approximately monotonic decreasing fashion. The Lucas two-country monetary model with habit can generate realistic conditional volatility in spot FOREX return.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Male and female Wistar rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) to provide a rat model of schizophrenia based on transient glutathione deficit. In the watermaze, BSO-treated male rats perform very efficiently in conditions where a diversity of visual information is continuously available during orientation trajectories [1]. Our hypothesis is that the treatment impairs proactive strategies anticipating future sensory information, while supporting a tight visual adjustment on memorized snapshots, i.e. compensatory reactive strategies. To test this hypothesis, BSO rats' performance was assessed in two conditions using an 8-arm radial maze task: a semi-transparent maze with no available view on the environment from maze centre [2], and a modified 2-parallel maze known to induce a neglect of the parallel pair in normal rats [3-5]. Male rats, but not females, were affected by the BSO treatment. In the semi-transparent maze, BSO males expressed a higher error rate, especially in completing the maze after an interruption. In the 2-parallel maze shape, BSO males, unlike controls, expressed no neglect of the parallel arms. This second result was in accord with a reactive strategy using accurate memory images of the contextual environment instead of a representation based on integrating relative directions. These results are coherent with a treatment-induced deficit in proactive decision strategy based on multimodal cognitive maps, compensated by accurate reactive adaptations based on the memory of local configurations. Control females did not express an efficient proactive capacity in the semi-transparent maze, neither did they show the significant neglect of the parallel arms, which might have masked the BSO induced effect. Their reduced sensitivity to BSO treatment is discussed with regard to a sex biased basal cognitive style.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Conservative Party emerged from the 2010 United Kingdom General Election as the largest single party, but their support was not geographically uniform. In this paper, we estimate a hierarchical Bayesian spatial probit model that tests for the presence of regional voting effects. This model allows for the estimation of individual region-specic effects on the probability of Conservative Party success, incorporating information on the spatial relationships between the regions of the mainland United Kingdom. After controlling for a range of important covariates, we find that these spatial relationships are significant and that our individual region-specic effects estimates provide additional evidence of North-South variations in Conservative Party support.