937 resultados para Space-Time Symmetries


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partiendo de la idea ampliamente aceptada de que las TIC (Tecnologías de Información y Comunicación) han tenido una profunda influencia en los modos en que la sociedad contemporánea experimenta y concibe las nociones de espacio y tiempo, y sustentándose en el contexto de la importancia adquirida por dichas nociones en la comprensión de los procesos sociales en general y estéticos en particular, esta investigación ha tenido por objetivo analizar la espacio-temporalidad en el contexto específico de la era digital. Poniendo en relación la fenomenología de los dispositivos tecnológicos con las nuevas estrategias de representación y puesta en imagen del espacio y el tiempo, nuestro propósito ha sido mostrar no sólo cómo a través de las prácticas artísticas digitales puede identificarse y analizarse el imaginario espacio-temporal de la era digital, sino también cómo éstas –basadas en una larga trayectoria estética de intersecciones entre arte y tecnología- han revestido al espacio y al tiempo de nuevas fenomenologías posibles, dando lugar a nuevas formas de percibirlos y cumpliendo, por tanto, un papel activo en la configuración de dicho imaginario y sus sucesivas transformaciones. La perspectiva teórica adoptada para esta investigación parte de las teorías postmodernas del espacio y el tiempo –considerando autores como Harvey o Jameson-, recurriendo a la sociología del Imaginario Social desarrollada por Castoriadis, Castro-Nogueira o J. L. Pintos para comprender cómo el espacio y el tiempo adquieren significaciones particulares. Combinando estas bases teóricas con los estudios visuales y los trabajos de teóricos de los medios como McLuhan, De Kerckhove o Lev Manovich, se establecerían las posibles relaciones entre las tecnologías, las representaciones sociales del espacio y el tiempo – analizadas a partir de metáforas como “compresión espacio-temporal”, “espacio de los flujos” o “tiempo atemporal” y sus relaciones con el Ciberespacio- y la fenomenología espacio-temporal de las prácticas artísticas y sus estrategias de representación visual –tomando como objeto de estudio tipologías artísticas que van desde el Hipercine a la Realidad Virtual y Aumentada, los Medios Locativos o la Telepresencia. La conclusión que hemos podido extraer de este estudio es que si bien distintos tipos de tecnologías afectan operacional y perceptivamente a la construcción social de la espacio-temporalidad, los modos en que estas tecnologías han estetizado la propia realidad y los modos en que condicionan la construcción estética de las nociones de espacio y tiempo, tanto a partir de la propia fenomenología del dispositivo como de la experimentación creativa con el mismo, ejercen una profunda influencia sobre el imaginario social y espacio-temporal propios de la era digital.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the transmission dynamics of infectious diseases is important to allow for improvements of control measures. To investigate the spatiotemporal pattern of an epidemic dengue occurred at a medium-sized city in the Northeast Region of Brazil in 2009, we conducted an ecological study of the notified dengue cases georeferenced according to epidemiological week (EW) and home address. Kernel density estimation and space-time interaction were analysed using the Knox method. The evolution of the epidemic was analysed using an animated projection technique. The dengue incidence was 6.918.7/100,000 inhabitants; the peak of the epidemic occurred from 8 February-1 March, EWs 6-9 (828.7/100,000 inhabitants). There were cases throughout the city and was identified space-time interaction. Three epicenters were responsible for spreading the disease in an expansion and relocation diffusion pattern. If the health services could detect in real time the epicenters and apply nimbly control measures, may possibly reduce the magnitude of dengue epidemics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Magnet Tracking System (MTS) is a minimally-invasive technique of continuous evaluation of gastrointestinal motility. In this study, MTS was used to analyse colonic propulsive dynamics and compare the transit of a magnetic pill with that of standard radio-opaque markers. MTS monitors the progress in real time of a magnetic pill through the gut. Ten men and 10 women with regular daily bowel movements swallowed this pill and 10 radio-opaque markers at 8 pm. Five hours of recordings were conducted during 2 following mornings. Origin, direction, amplitude and velocity of movements were analysed relative to space-time plots of the pill trajectory. Abdominal radiographs were taken to compare the progress of both pill and markers. The magnetic pill lay idle for 90% of its sojourn in the colon; its total retrograde displacement accounted for only 20% of its overall movement. Analysis of these movements showed a bimodal distribution of velocities: around 1.5 and 50 cm min(-1), the latter being responsible for 2/3 of distance traversed. There were more movements overall and more mass movements in males. Net hourly forward progress was greater in the left than right colon, and greater in males. The position of the magnetic pill correlated well with the advancement of markers. MTS showed patterns and propulsion dynamics of colonic segments with as yet unmet precision. Detailed analysis of slow and fast patterns of colonic progress makes it possible to specify the motility of colonic segments, and any variability in gender. Such analysis opens up promising avenues in studies of motility disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The integral representation of the electromagnetic two-form, defined on Minkowski space-time, is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order to define the radiative field. This criteria generalizes the well-known structureless charge case. We begin with the curvature two-form, because its field equations incorporate the motion of the sources. The gauge theory methods (connection one-forms) are not suited because their field equations do not incorporate the motion of the sources. We obtain an integral solution of the Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us to propose a new method of solving the problem of the nature of the retarded radiative field. This method is based on a projection tensor operator which, being local, is suited to being implemented on general relativity. We propose the field equations for the pair {electromagnetic field, projection tensor J. These field equations are an algebraic differential first-order system of oneforms, which verifies automatically the integrability conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We solve Einsteins equations in an n-dimensional vacuum with the simplest ansatz leading to a Friedmann-Robertson-Walker (FRW) four-dimensional space time. We show that the FRW model must be of radiation. For the open models the extra dimensions contract as a result of cosmological evolution. For flat and closed models they contract only when there is one extra dimension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model of anisotropic fluid with three perfect fluid components in interaction is studied. Each fluid component obeys the stiff matter equation of state and is irrotational. The interaction is chosen to reproduce an integrable system of equations similar to the one associated to self-dual SU(2) gauge fields. An extension of the BelinskyZakharov version of the inverse scattering transform is presented and used to find soliton solutions to the coupled Einstein equations. A particular class of solutions that can be interpreted as lumps of matter propagating in empty space-time is examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some generalized soliton solutions of the cosmological EinsteinRosen type defined in the space-time region t2=z2 in terms of canonical coordinates are considered. Vacuum solutions are studied and interpreted as cosmological models. Fluid solutions are also considered and are seen to represent inhomogeneous cosmological models that become homogeneous at t?8. A subset of them evolve toward isotropic FriedmannRobertsonWalker metrics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We first introduce structural realism as a position in the metaphysics of science, pointing out the way in which this position replaces intrinsic properties with relations so that it amounts to a holistic in contrast to an atomistic metaphysics. We argue in favour of a moderate version of structural realism that puts objects and relations on the same ontological footing and assess the general philosophical arguments for this position. The second section shows how structural realism gains support from quantum physics. The third section explains how structural realism can be applied to the metaphysics of space-time.