994 resultados para Sowing.
Resumo:
Gliricidia (Gliricidia sepium) seedlings are usually beneficial to corn crops when planted between corn rows. The objective of this work was to assess the effects of corn intercropped with gliricidia and "sabiá" (Mimosa caesalpiniifolia), a species native to the Brazilian northeastern region, on weed control and corn green ear and grain yields. The experiment was carried out at Estação Experimental da Universidade Federal Rural do Semi-Árido - UFERSA (Mossoró, State of Rio Grande do Norte, Brazil). The experimental design consisted of randomized complete blocks (multifactorial design) with five replications, arranged in split-plots. The plots consisted of corn cultivars AG1051 and BM 2022; subplot treatments (six) were no-hoeing, twice-hoeing (at 20 and 40 days after sowing) and intercropping with gliricidia and "sabiá", either directly sown or transplanted, simultaneously with corn sowing. The intercropped leguminous plants were spaced 0.40 m from each other, and directly seeded or transplanted (30-day-old seedlings) in between two 1 m-spaced corn rows. Twenty three weed species were identified during the experiment. Gliricidia seedlings were superior to "sabiá" seedlings with regard to plant height and survival rate. The highest corn green ear and grain yields were found for twice-hoed subplots, while the lowest yield was found for no-hoed or intercropped subplots. However, grain yield values in intercropped treatments did not differ from grain yield values in hoed plots. In addition, marketable husked green ear mean weights did not differ between twice-hoed subplots and subplots directly seeded with gliricidia and "sabiá". Such results indicated that corn benefited from the intercropping system, but intercropping with gliricidia and "sabiá" transplanted resulted in lower benefits than with the direct sowing of those species.
Resumo:
Trianthema portulacastrum is a very problematic summer crop weed and a complete crop failure has been observed because of this weed at high density. The effect of different ecological factors on germination of T. portulacastrum seeds collected in two different years (2009 and 2005) was studied in laboratory experiments. An increase in temperature from 25 to 35 ºC increased germination percentage of T. portulacastrum from 65 to 85%, after which germination started to decrease, reducing to 71.25% at 45 ºC. Trianthema portulacastrum had maximum germination with distilled water compared with different salt solutions and drought stress levels. Germination was significantly minimum at salinity and drought stress level of 250 mM and -0.8 MPa, respectively. Emergence of T. portulacastrum was maximum (86.25%) at 100% field capacity level but decreased sharply as field capacity decreased thereafter, and minimum emergence (30%) was recorded at field capacity level of 25%. Germination of T. portulacastrum was lowest at pH 5 and any increase in pH resulted in increased germination. A pH range of 8 to 10 had statistically similar germination. Sowing depth of 6 cm reduced the emergence of T. portulacastrum to zero. Reduction in emergence was recorded with depth increase from zero to 5 cm. Maximum emergence was recorded from soil surface (0 cm). An increase in temperature, salinity, drought, sowing depth (up to 4 cm) and a decrease in field capacity increased time to start germination/emergence, time to 50% germination/emergence and mean germination/emergence time but decreased germination/emergence index. Seeds collected during 2009 gave higher germination than old seeds collected in 2005. This information might contribute to development of effective control of T. portulacastrum.
Resumo:
The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sorghum vulgare plants as bio-indicator of herbicide presence. Plant poisoning evaluation and harvest for dry matter determination were carried out 21 days after sorghum sowing. To calculate C50, the nonlinear log-logistic model was applied and sorption ratios of the herbicide were obtained in different soils. The decreasing sorption ratio of formesafen in the soils was: Organosol > Ultisol > Cambisol. It was concluded that the contents of organic matter and clay in the soils were the attributes that most influenced fomesafen sorption.
Resumo:
There is little information about the selectivity of herbicides in physic nut (Jatropha curcas) in Brazil. Therefore, this study aimed to evaluate the selectivity of different doses and mixtures of paraquat and diuron in direted-spray applications in physic nut plants in greenhouse conditions. The study used a randomized block design, with five replicates. The treatments were: paraquat (200 and 600 g ha-1), diuron (1,000 and 2,000 g ha-1), paraquat + diuron (200 + 1,000 g ha-1), paraquat + diuron (200 + 2,000 g ha-1), paraquat + diuron (600 + 1,000 g ha-1), paraquat + diuron (600 + 2,000 g ha-1) and a control (no application). Directed-spray application was performed at 70 days after sowing by the lower third of the plants. The treatments of diuron and paraquat + diuron mixtures affected the growth and photosynthetic activity of physic nut plants, injuries being more pronounced at doses of diuron of 2,000 g ha‑1, while the isolated application of paraquat at doses of 200 and 600 g ha-1 showed good selectivity potential for physic nut plants.
Resumo:
Sorghum, pearl millet, and Brachiaria ruziziensis have similar characteristics which have led to their use for mulch formation in no-till systems. This study was carried out to evaluate the potential of these three species as straw suppliers to suppress weed emergence. Initial findings led to the conclusion that both pearl millet and Brachiaria ruziziensis have similar or superior potential as weed suppressors, compared to sorghum straw, a species with recognized allelopathic potential. Subsequently, new trials were conducted under greenhouse conditions by sowing weed species in pots, followed by covering of the soil with the straw under evaluation. Independent experiments were conducted for Euphorbia heterophylla and Bidens pilosa. In each experiment, the factors analyzed were type of straw (pearl millet and B. ruziziensis), amount of straw (equivalent to 4 and 8 t ha-1 dry mass) and irrigation method (surface and subsurface). Both pearl millet and B. ruziziensis have shown to be species that can be cultivated to produce straw with allelopathic potential. These effects were effective in suppressing the emergence or early growth of E. heterophylla and B. pilosa. There was no difference in the suppression of emergence of these species when the soil cover level was alternated between 4 and 8 t ha-1 dry mass.
Resumo:
The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².
Resumo:
Biosynthesis and subsequent release of allelochemicals by a plant into the environment is supposed to be influenced by its growing conditions. To ascertain what will be the allelopathic action of plant parts and rhizospheric soils of parthenium (Parthenium hysterophorus) growing at various farm locations with varied growing conditions, germination and seedling growth of maize hybrid (DK 6142) were assayed by sowing its seeds in petri plates lined with filter paper and pots filled with soil. Minimum germination percentage (30.0%), germination index (2.01), germination energy (36.3), seedling length (3.3 cm), seedling biomass (10 mg) and seedling vigor index (99.0) of maize were observed in leaf extract followed by fruit and whole plant extracts of parthenium growing near the field border. Rhizospheric soil collected underneath parthenium growing near a water channel caused maximum reductions in germination index (30.8%), germination energy (40.6%), seedling length (32.6%), seedling biomass (35.1%) and seedling vigor index (34.3%) of maize compared with that soil without any vegetation. Phytotoxic inhibitory effects of both parthenium plant and rhizospheric soil were more pronounced on maize root than its shoot growth. The higher suppressive action against germination and seedling growth of maize was probably due to higher total phenolic concentrations (6678.2 and 2549.0 mg L-1) and presence of phenolic compounds viz., gallic, caffeic, 4-hydroxy-3-methoxy benzoic, p-coumaric and m-coumaric acids; and ferulic, vanillic, syringic and m-coumaric acids in aqueous leaf extract of parthenium uprooted near the field border and its rhizospheric soil collected near a water channel, respectively.
Resumo:
Growing concerns about toxicity and development of resistance against synthetic herbicides have demanded looking for alternative weed management approaches. Allelopathy has gained sufficient support and potential for sustainable weed management. Aqueous extracts of six plant species (sunflower, rice, mulberry, maize, brassica and sorghum) in different combinations alone or in mixture with 75% reduced dose of herbicides were evaluated for two consecutive years under field conditions. A weedy check and S-metolachlor with atrazine (pre emergence) and atrazine alone (post emergence) at recommended rates was included for comparison. Weed dynamics, maize growth indices and yield estimation were done by following standard procedures. All aqueous plant extract combinations suppressed weed growth and biomass. Moreover, the suppressive effect was more pronounced when aqueous plant extracts were supplemented with reduced doses of herbicides. Brassica-sunflower-sorghum combination suppressed weeds by 74-80, 78-70, 65-68% during both years of study that was similar with S-metolachlor along half dose of atrazine and full dose of atrazine alone. Crop growth rate and dry matter accumulation attained peak values of 32.68 and 1,502 g m-2 d-1 for brassica-sunflower-sorghum combination at 60 and 75 days after sowing. Curve fitting regression for growth and yield traits predicted strong positive correlation to grain yield and negative correlation to weed dry biomass under allelopathic weed management in maize crop.
Resumo:
One of the very important components in the organic maize production costs refers to spending on weed control. In this research were assessed the effects of maize hybrids (AG 1051 and BR 205) in an intercropping with Gliricidia (Gliricidia sepium) and mechanical hoeing on weed control. The treatments assessed were: A - maize monocropping + two hoeings (20 and 40 days after sowing); B - maize with one hoeing at 20 days + intercropping with gliricidia sowed after hoeing; C - maize sowing intercropped with gliricidia at the time of maize sowing + hoeing at 40 days; D - maize sowing intercropped with gliricidia at the time of maize sowing without hoeing; E - monocropping maize without hoeing. In the intercroppings, gliricidia was sowed in broadcast seeding with 30 viable seeds m-2. Maize hybrids did not differ in their effects on weed growth and grain yield. Treatments A, B and C have reduced weed growth, compared to treatments D and E. The highest grain yield was obtained with treatment A and the lowest with treatment E. It was concluded that intercropping maize and gliricidia is not a good alternative for an integrated weed management in maize crops in the conditions assessed.
Resumo:
ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.
Resumo:
The use of the Roundup Ready(r) technology and the cultivation of a second crop influence the floristic composition of weed communities in Brazilian Central-West region cropping systems. This study has aimed to diagnose the dominant weed species in southwestern Goiás in areas of genetically-modified and conventional soybeans, using phytosociological and floristic surveys. Weed sampling was obtained by collecting all the plants present within a 0.5 m hollow frame, randomly thrown 20 times in each of thirty-five agricultural areas in the 2012/2013 harvest. Field survey was carried out in three periods: before desiccation for soybean sowing, before postemergence herbicide in soybean first application and before postemergence herbicide application in late harvest. A total of 525 m2 was inventoried and 3,219 weeds were collected, which included 79 species, 58 genera and 28 families. Families Poaceae, Asteraceae, Euphorbiaceae, Fabaceae, Amaranthaceae, were the most representative in the survey. Species Cenchrus echinatus, Glycine max, Chamaesyce hirta, Commelina benghalensis, and Alternanthera tenella stood out in importance. The RR+millet soybean treatment had the highest number of species (44), while the conventional soybean + sorghum treatment had the lowest number of species (18). The highest number of species was recorded in first sampling period. Treatments conventional soybean + maize and conventional soybean + millet showed higher similarity (70%), while treatments RR soybean + millet and conventional soybean + sorghum showed the least (51%). Species of difficult control were recorded in all cultivation systems analyzed.
Resumo:
The objective of this study was to evaluate the weed community in a raw sugarcane renovation area with three soil managements and peanut sowing in succession. The experiment was conducted during the 2007/08 season on a raw sugarcane area harvested without prior burning in the last five cuts. A randomized block design with treatments arranged in a split plot and arranged in four replications was used. The main treatments consisted of three cropping systems: conventional tillage, minimum tillage and direct planting, and subplots consisted in the absence (resting) or presence of crop rotation with peanuts. After 135 days from planting peanuts and 180 days of sugarcane harvest, the number of weeds m-2 was counted and the shoot dry biomass of the weeds collected was determined. The data were interpreted by analysis of variance and the means were compared by Tukey's test at 5% probability so that phytosociological indices a, b, c e d were calculated. The use of soil conservation tillage and peanut in rotation with sugarcane in the renovation areas is effective in controlling weeds and suppression of weed species difficult to control like Cyperus rotundus, Commelina bengalensis, Urochloa plantaginea, and Digitaria nuda.
Resumo:
Sulfentrazone leaching potential is dependent on soil properties such as strength and type of clay, organic matter content and pH, and may result in ineffectiveness of the product and contamination of groundwater. The objective of this study was to evaluate sulfentrazone leaching in five soils of the sugarcane region in the Northeast Region of Brazil, with different physical and chemical properties, by means of bioassay and high-performance liquid chromatography (HPLC) resolution. The experiment was conducted in a split plot in a completely randomized design. The plots had PVC columns with a 10 cm diameter and being 50 cm deep, filled with five different soil classes (quartzarenic neosol, haplic cambisol, yellowish-red latosol, yellowish-red acrisol, and haplic gleysol), and subplots for 10 depths in columns, 5 cm intervals. On top of the columns, sulfentrazone application was conducted and 12 hours later there was a simulated rainfall of 60 mm. After 72 hours, the columns were horizontally placed and longitudinally open, divided into sections of 5.0 cm. In the center of each section of the columns, soil samples were collected for chromatographic analyses and sorghum sowing was carried out as an indicator plant. The bioassay method was more sensitive to detect the presence of sulfentrazone in an assessment for chromatography soil, having provided greater herbicide mobility in quartzarenic neosol and yellowish-red latosol, whose presence was detected by the indicator plant to a depth of 45 and 35 cm, respectively. In the other soils, sulfentrazone was detected up to 20 cm deep. The intense mobility of sulfentrazone in quartzarenic neosol may result in herbicide efficiency loss in the soil because the symptoms of intoxication and the amount of herbicide detected via silica were highest between 15 cm and 35 cm depth regarding the soil surface layer (0-10 cm), indicating that sulfentrazone should be avoided in soils with such characteristics.
Resumo:
The seed coat is one of the main determinants of seed germination, vigor and longevity potentials. It is also intimately associated with temporal and spatial dispersion of seed germination in a large number of plant species. The understanding of its properties and characteristics may explain, anticipate or even allow the modification of seed performance under certain environmental conditions. There is a growing volume of evidence associating seed coat characteristics to specific seed problems. For example, susceptibility to mechanical damage is related to lignin content of the seed coat, while seed longevity and tolerance to field weathering depends on seed coat integrity. Seed performance in many legumes has been associated with certain seed coat structures, such as the hilum, strophiole and micropyle. In soybean, permeability is also related with porosity, color, and cerosity, that affect seed vigor, storage potential, resistance to shrinking and fungi infection, and to susceptibility to imbibition damage. The understanding of these associations is necessary before genetic alterations through breeding for desirable characteristics and is fundamental for the development and improvement of seed pre-sowing treatments, production, handling and quality evaluation procedures, which may ultimately result in reduction of seed quality losses and increase the efficiency of agricultural production systems.
Resumo:
The influence of peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) on the development and diversity of arbuscular mycorrhizal fungi (AMF) from an agrosystem was investigated. Soil collected from an agricultural field where maize had been grown was inserted into sowing holes, under the seeds of peanut, sorghum and maize those were subsequently grown in sterilised quartz sand separately in plastic boxes for five months. After this period, collections of roots and rhizospheric soil were made to evaluate the percentages of root colonization (RC), number of spores (NS) and species of AMF. Peanut showed the highest average values for RC and NS: 24.5% and 547.8/100 g of soil, respectively. Maize had an average RC of 19.7% and 415.2 spores/100g soil. Sorghum showed the lowest values: 15.9% for average RC and 349.8 spores/100 g soil. A total of fourteen species of AMF were identified. Seven species were identified from peanut rhizospheres, Entrophospora colombiana being the most abundant and frequent. In sorghum rhizospheres, twelve species were found, Glomus geosporum was the dominant taxon in terms of number of spores and frequency. Ten species were detected in maize with Acaulospora longula being the most abundant and the most frequent. It was observed that peanut was the best plant for promoting the sporulation of AMF, while sorghum favoured the establishment of most AMF species, followed by maize.