995 resultados para Soil test


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From October 2014 to March 2015, I provided excavation oversight services at a property with substantial environmental concerns. The property in question is located near downtown Seattle and was formerly occupied by the Washington’s first coal gasification plant. The plant operated from 1888 to 1908 and produced coal gas for municipal use. A coal tar like substance with a characteristically high benzene concentration was a byproduct of the coal gasification process and heavily contaminated at or below the surface grade of the plant as shown in previous investigations on the property. Once the plant ceased operation in 1908 the property was left vacant until 1955 when the site was filled in and a service station was built on the property. The main goal of the excavation was not to achieve cleanup on the property, but to properly remove what contaminated soil was encountered during the redevelopment excavation. Areas of concern were identified prior to the commencement of the excavation and an estimation of the extent of contamination on the property was developed. “Hot spots” of contaminated soil associated with the fill placed after 1955 were identified as areas of concern. However, the primary contaminant plume below the property was likely sourced from the coal gasification plant, which operated at an approximate elevation of 20 feet. We planned to constrain the extents of the soil contamination below the property as the redevelopment excavation progressed. As the redevelopment excavation was advanced down to an elevation of approximately 20 feet, soil samples were collected to bound the extents of contamination in the upper portion of the site. The hot spots, known pockets of carcinogenic polycyclic aromatic hydrocarbons (cPAH) located above 20 feet elevation, were excavated as part of the redevelopment excavation. Once a hot spot was excavated, soil samples were collected from the north, south, east, west and bottom sidewalls of the hot spot excavation to check for remaining cPAH. Additionally, four underground storage tanks (USTs) associated with the service station were discovered and subsequently removed. Soil samples were also collected from the resulting UST excavation sidewalls to check for remaining petroleum hydrocarbons. Once the excavation reached its final excavation depth of 20 to 16 feet in elevation, bottom of excavation samples were collected on a 35 foot by 35 foot grid to test for concentrations of contaminants remaining onsite. Once the redevelopment excavation was complete, soils observed from borings drilled for either structural elements, geotechnical wells, or environmental wells were checked for any evidence of contamination using field screening techniques. Evidence of contamination was used to identify areas below the final excavation grade which had been impacted by the operation of the coal gasification plant. Samples collected from the excavation extents of hot spots and USTs show that it was unlikely that any contamination traveled from the post-1955 grade down to the pre-1955 grade. Additionally, the lack of benzene in the bottom of excavation samples suggests that a release from the coal gasification plant occurred below the redevelopment excavation final elevations of 20 to 16 feet. Qualitative data collected from borings for shoring elements and wells indicated that the spatial extent of the subsurface contaminant plume was different than initially estimated. Observations of spoils show that soil contamination extends further to the southwest and not as far to the east and north than originally estimated. Redefining the extent of the soil contamination beneath the property will allow further subsurface investigations to focus on collecting quantitative data in areas that still represent data gaps on the property, and passing over areas that have shown little signs of contamination. This information will help with the formation of a remediation plan should the need to clean up the site arise in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kolmogorov-Smirnov (KS) test is a non-parametric test which can be used in two different circumstances. First, it can be used as an alternative to chi-square (?2) as a ‘goodness-of-fit’ test to compare whether a given ‘observed’ sample of observations conforms to an ‘expected’ distribution of results (KS, one-sample test). An example of the use of the one-sample test to determine whether a sample of observations was normally distributed was described previously. Second, it can be used as an alternative to the Mann-Whitney test to compare two independent samples of observations (KS, two-sample test). Hence, this statnote describes the use of the KS test with reference to two scenarios: (1) to compare the observed frequency (Fo) of soil samples containing cysts of the protozoan Naegleria collected each month for a year with an expected equal frequency (Fe) across months (one-sample test), and (2) to compare the abundance of bacteria on cloths and sponges sampled in a domestic kitchen environment (two-sample test).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibiotics are becoming increasingly prevalent in bacterial communities due to clinical and agricultural misuse and overuse in their environment. As exposure increases, so does the incidence of microbial resistance. Such is the case with bacterial resistance to tetracyclines, a phenotype often acquired through the horizontal gene transfer of tet genes between bacteria. The objective of this project was to analyze the bacterial diversity of tet resistance genes in soil from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine each bacterium’s degree of resistance. The 16S rRNA gene from antibiotic-resistant isolates was amplified by PCR and sequenced to identify the isolates. All isolates’ tet genes were amplified by multiplex PCR, sequenced, and compared. Among eight isolates, three distinct species were positively identified based on their 16S rRNA sequences and four distinct tet genes were identified, though all tested susceptible to tetracycline via the Kirby-Bauer test. This project clarifies some aspects of the ecology of antibiotic resistance genes, their natural ecological function and the potential for the expansion of intrinsic multi-antibiotic resistance into new ecosystems and/or hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to relative ground movement, buried pipelines experience geotechnical loads. The imposed geotechnical loads may initiate pipeline deformations that affect system serviceability and integrity. Engineering guidelines (e.g., ALA, 2005; Honegger and Nyman, 2001) provide the technical framework to develop idealized structural models to analyze pipe‒soil interaction events and assess pipe mechanical response. The soil behavior is modeled using discrete springs that represent the geotechnical loads per unit pipe length developed during the interaction event. Soil forces are defined along three orthogonal directions (i.e., axial, lateral and vertical) to analyze the response of pipelines. Nonlinear load-displacement relationships of soil defined by a spring, is independent of neighboring spring elements. However, recent experimental and numerical studies demonstrate significant coupling effects during oblique (i.e., not along one of the orthogonal axes) pipe‒soil interaction events. In the present study, physical modeling using a geotechnical centrifuge was conducted to improve the current understanding of soil load coupling effects of buried pipes in loose and dense sand. A section of pipeline, at shallow burial depth, was translated through the soil at different oblique angles in the axial-lateral plane. The force exerted by the soil on pipe is critically examined to assess the significance of load coupling effects and establish a yield envelope. The displacements required to soil yield force are also examined to assess potential coupling in mobilization distance. A set of laboratory tests were conducted on the sand used for centrifuge modeling to find the stress-strain behavior of sand, which was used to examine the possible mechanisms of centrifuge model test. The yield envelope, deformation patterns, and interpreted failure mechanisms obtained from centrifuge modeling are compared with other physical modeling and numerical simulations available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors acknowledge the financial support the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS) in order to complete some of the soil and pore water sample analysis as well as the Czech Ministry of Education, Youth and Sports (COST CZ LD13068), the Czech Science Foundation (GAČR 14-02183P) and EU COST actionFP1407 (‘ModWoodLife’) short term scientific mission grant in order to complete the column leaching test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the period May to August 1960, an Air Force scientific field party conducted earth science studies and tested a raised sand terrace, located about 224 km south of Station Nord, Northeast Greenland. The operation staged from Thule Air Force Base was climaxed by successful test Iandings on the terrace by C-119 and C-130 aircraft. Significant data were obtained from related investigations on a typical arctic lake, ice-free soils, meteorology, engineering geology, geomorphology, and electrical resistivity of soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil polluted and not oil polluted soils (crude oil hydrocarbons contents: 20-92500 mg/kg dry soil mass) under natural grass and forest vegetation and in a bog in the Russian tundra were compared in their principal soil ecological parameters, the oil content and the microbial indicators. CFE biomass-C, dehydrogenase and arylsulfatase activity were enhanced with the occurrence of crude oil. Using these parameters for purposes of controlling remediation and recultivation success it is not possible to distinguish bctween promotion of microbial activity by oil carbon or soil organic carbon (SOC). For this reason we think that these parameters are not appropriate to indicate a soil damage by an oil impact. In contrast the metabolie quotient (qC02), calculated as the ratio between soil basal respiration and the SIR biomass-C was adequate to indicate a high crude oil contamination in soil. Also, the ß-glucosidase activity (parameter ß-GL/SOC) was correlated negatively with oil in soil. The indication of a soil damage by using the stress parameter qCO, or the specific enzyme activities (activity/SOC) minimizes the promotion effect of the recent SOC content on microbial parameters. Both biomass methods (SIR, CFE) have technical problems in application for crude oil-contaminated and subarctic soils. CFE does not reflect the low C_mic level of the cold tundra soils. We recommend to test every method for its suitability before any data collection in series as well as application for cold soils and the application of ecophysiological ratios as R_mic/C_mic, C_mic/SOC or enzymatic activity/SOC instead of absolute data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Salgesch forest in the Canton of Valais in Switzerland, the understory has been removed to test whether effects on pine tree vitality. The data set published here compromises 120 time series of 60 soil temperature and 60 volumetric water content (VWC) sensors (EC-TM and 5-TM) (Decagon Devices, WA, USA) at three soil depth levels (5, 30, 60 cm) employed in the direct vicinity of six control trees and six trees with the undergrowth removed. At the levels 5 and 60 cm, three replications were made whereas 4 replications were made at level 30 cm. Six loggers recorded hourly data since 2010 with 18% gaps or 11% when not considering winter months December, January and February. The figure attached to this repository shows the average VWC and temperature of all measurements within the same depth and treatment specific setting aggregated in a defined time interval and period. In addition to that, the standard deviations are plotted as transparent polygons. In case of insufficient values for calculating standard deviations, the setting specific mean standard deviation of the considered time period are inserted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion and unsustainable land use produce adverse effects on SOC content. Soil management techniques and corrections can be applied for soil recovery, especially, with afforestaion purposes. This study presents the short term effects on the application of different treatments on soil properties for soil included in several sets of closed plots located in the experimental area of Pinarillo (Nerja, Spain). The analysed soil properties were: PH, EC, organic carbon, total nitrogen and total carbon. In order to verify possible differences, we applied the test of Mann-Whitney U in corroboration with the previous homogeneity test of variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil particle loss can result in strength and volume reductions which are difficult to predict. This paper investigates the influence of the removal of fractions of selected particle sizes under different confining pressures. The mass loss process was reproduced by the dissolution of selected salt particle sizes and fractions from uniform Leighton Buzzard sand. The dissolution tests were performed in a triaxial cell customised to allow circulation of pore-fluid thereby allowing the dissolution/removal of the salt fraction. Test results from previously conducted oedometric dissolution tests and subsequent triaxial dissolution tests all show increases in void ratio. From the triaxial tests, a reduction in shear strength with increasing ductility was observed. Volumetric and strength behaviour were found to be related to the particle size and fraction material removed while shear-wave measurements obtained pre- and post-particle removal indicate significant changes in small-strain stiffness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to investigate very small strain elastic behaviour of soils under unsaturated conditions, using bender/extender element (BEE) testing. The behaviour of soils at very small strains has been widely studied under saturated conditions, whereas much less work has been performed on very small strain behaviour under unsaturated conditions. A suction-controlled double wall triaxial apparatus for unsaturated soil testing was modified to incorporate three pairs of BEEs transmitting both shear and compression waves with vertical and horizontal directions of wave transmission and wave polarisation. Various different techniques for measuring wave travel time were investigated in both the time domain and the frequency domain and it was concluded that, at least for the current experimental testing programme, peak-to-first-peak in the time domain was the most reliable technique for determining wave travel time. An experimental test programme was performed on samples of compacted speswhite kaolin clay. Two different forms of compaction were employed (i.e. isotropic and anisotropic). Compacted kaolin soil samples were subjected to constant suction loading and unloading stages at three different values of suction, covering both unsaturated conditions (s= 50kPa and s= 300kPa) and saturated conditions (s=0). Loading and unloading stages were performed at three different values of stress ratio (η=0, η=1 and η=-1 ). In some tests a wetting-drying cycle was performed before or within the loading stage, with the wetting-drying cycles including both wetting-induced swelling and wetting-induced collapse compression. BEE tests were performed at regular intervals throughout all test stages, to measure shear wave velocity Vs and compression wave velocity Vp and hence to determine values of shear modulus G and constrained modulus M. The experimental test programme was designed to investigate how very small strain shear modulus G and constrained modulus M varied with unsaturated state variables, including how anisotropy of these parameters developed either with stress state (stress-induced anisotropy) or with previous straining (strain-induced anisotropy). A new expression has been proposed for the very small strain shear modulus G of an isotropic soil under saturated and unsaturated conditions. This expression relates the variation of G to only mean Bishop’s stress p* and specific volume v, and it converges to a well-established expression for saturated soils as degree of saturation approaches 1. The proposed expression for G is able to predict the variation of G under saturated and unsaturated conditions at least as well as existing expressions from the literature and it is considerably simpler (employing fewer state variables and fewer soil constants). In addition, unlike existing expressions from the literature, the values of soil constants in the proposed new expression can be determined from a saturated test. It appeared that, in the current project at least, any strain-induced anisotropy of very small strain elastic behaviour was relatively modest, with the possible exception of loading in triaxial extension. It was therefore difficult to draw any firm conclusion about evolution of strain-induced anisotropy and whether it depended upon the same aspects of soil fabric as evolution of anisotropy of large strain plastic behaviour. Stress-induced anisotropy of very small strain elastic behaviour was apparent in the experimental test programme. An attempt was made to extend the proposed expression for G to include the effect of stress-induced anisotropy. Interpretation of the experimental results indicated that the value of shear modulus was affected by the values of all three principal Bishop’s stresses (in the direction of wave transmission, the direction of wave polarisation and the third mutually perpendicular direction). However, prediction of stress-induced anisotropy was only partially successful, and it was concluded that the effect of Lode angle was also significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.