987 resultados para Soil phosphorus
Resumo:
Background: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.
Resumo:
Total phosphorus (TP) and soluble reactive phosphorus (SRP) loads to watercourses of the River Basin Districts (RBDs) of Great Britain (GB) were estimated using inventories of industrial P loads and estimates of P loads from sewage treatment works and diffuse P loads calculated using region-specific export coefficients for particular land cover classes combined with census data for agricultural stocking densities and human populations. The TP load to GB waters was estimated to be 60 kt yr(-1), of which households contributed 73, agriculture contributed 20, industry contributed 3, and 4 came from background sources. The SRP load to GB waters was estimated to be 47 kt yr(-1), of which households contributed 78, agriculture contributed 13, industry contributed 4, and 6 came from background Sources. The 'average' area-normalized TP and SRP loads to GB waters approximated 2.4 kg ha(-1) yr(-1) and 1.8 kg ha(-1) yr(-1), respectively. A consideration of uncertainties in the data contributing to these estimates suggested that the TP load to GB waters might lie between 33 and 68 kt yr(-1), with agriculture contributing between 10 and 28 of the TP load. These estimates are consistent with recent appraisals of annual TP and SRP loads to GB coastal waters and area-normalized TP loads from their catchments. Estimates of the contributions of RBDs to these P loads were consistent with the geographical distribution of P concentrations in GB rivers and recent assessments of surface waters at risk from P Pollution.
Resumo:
Re-establishing nutrient-cycling is often a key goal of mine-site restoration. This goal can be achieved by applying fertilisers (particularly P) in combination with seeding N-fixing legumes. However, the effect of this strategy on other key restoration goals such as the establishment and growth of non-leguminous species has received little attention. We investigated the effects of P-application rates either singly, or in combination with seeding seven large understorey legume species, on jarrah forest restoration after bauxite mining. Five years after P application and seeding, legume species richness, density and cover were higher in the legume-seeded treatment. However, the increased establishment of legumes did not lead to increased soil N. Increasing P-application rates from 0 to 80 kg P ha−1 did not affect legume species richness, but significantly reduced legume density and increased legume cover: cover was maximal (∼50%) where 80 kg P ha−1 had been applied with large legume seeds. Increasing P-application had no effect on species richness of non-legume species, but increased the density of weeds and native ephemerals. Cover of non-legume species decreased with increasing P-application rates and was lower in plots where large legumes had been seeded compared with non-seeded plots. There was a significant legume × P interaction on weed and ephemeral density: at 80 kg P ha−1 the decline in density of these groups was greatest where legumes were seeded. In addition, the decline in cover for non-legume species with increasing P was greatest when legumes were seeded. Applying 20 kg P ha−1 significantly increased tree growth compared with tree growth in unfertilised plots, but growth was not increased further at 80 kg ha−1 and tree growth was not affected by seeding large legumes. Taken together, these data indicate that 80 kg ha−1 P-fertiliser in combination with (seeding) large legumes maximised vegetation cover at five years but could be suboptimal for re-establishing a jarrah forest community that, like unmined forest, contains a diverse community of slow-growing re-sprouter species. The species richness and cover of non-legume understorey species, especially the resprouters, was highest in plots that received either 0 or 20 kg ha−1 P and where large legumes had not been seeded. Therefore, our findings suggest that moderation of P-fertiliser and legumes could be the best strategy to fulfil the multiple restoration goals of establishing vegetation cover, while at the same time maximising tree growth and species richness of restored forest.
Resumo:
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.
Resumo:
Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (−AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg−1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant-available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ∼0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.
Resumo:
Aims: We investigated the role of arbuscular mycorrhizal fungi (AMF) and heterotrophic soil microbes in the uptake of phosphorus (P) by Trifolium subterraneum from a pulse. Methods: Plants were grown in sterilised pasture field soil with a realistic level of available P. There were five treatments, two of which involved AMF: 1) unsterilised field soil containing a community of AMF and heterotrophic organisms; 2) Scutellospora calospora inoculum (AMF); 3) microbes added as filtrate from the field soil; 4) microbes added as filtrate from the S. calospora inoculum; 5) no additions, i.e. sterilised field soil. After 11 weeks, plants were harvested: 1 day before (day 0), 1 day after (day 2) and 7 days after (day 8) the pulse of P (10 mg kg−1). Results: There was no difference among treatments in shoot and root dry weight, which increased from day 0 to day 8. At day 0, shoots and roots of plants in the colonised treatments had higher P and lower Mn concentrations. After the pulse, the rate of increase in P concentration in the shoots was slower for the colonised plants, and the root Mn concentration declined by up to 50 % by day 2. Conclusions: Plants colonised by AMF had a lower rate of increase in shoot P concentration after a pulse, perhaps because intraradical hyphae accumulated P and thus reduced its transport to the shoots.
Resumo:
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.
Resumo:
Background and Aims Ptilotus polystachyus (green mulla mulla; ptilotus) is a short-lived perennial herb that occurs widely in Australia in arid and semi-arid regions with nutrient poor soils. As this species shows potential for domestication, its response to addition of phosphorus (P) and nitrogen (N) was compared to a variety of the domesticated exotic perennial pasture herb Cichorium intybus (chicory), ‘Puna’. Methods Pots were filled with 3 kg of an extremely nutrient-deficient sterilized field soil that contained 3 mg kg−1 mineral N and 2 mg kg−1 bicarbonate-extractable P. The growth and P and N accumulation of ptilotus and chicory in response to seven rates of readily available phosphorus (0–300 mg P pot−1) and nitrogen (N) (0–270 mg N pot−1) was examined. Key Results Ptilotus grew extremely well under low P conditions: shoot dry weights were 23, 6 and 1·7 times greater than for chicory at the three lowest levels of P addition, 0, 15 and 30 mg P pot−1, respectively. Ptilotus could not downregulate P uptake. Concentrations of P in shoots approached 4 % of dry weight and cryo-scanning electron microscopy and X-ray microanalysis showed 35–196 mm of P in cell vacuoles in a range of tissues from young leaves. Ptilotus had a remarkable tolerance of high P concentrations in shoots. While chicory exhibited symptoms of P toxicity at the highest rate of P addition (300 mg P pot−1), no symptoms were present for ptilotus. The two species responded in a similar manner to addition of N. Conclusions In comparison to chicory, ptilotus demonstrated an impressive ability to grow well under conditions of low and high P availability. Further study of the mechanisms of P uptake and tolerance in ptilotus is warranted.
Resumo:
Biocidal treatment of soil is used to remove or inhibit soil microbial activity, and thus provides insight into the relationship between soil biology and soil processes. Chemical (soil pH, phosphodiesterase, protease) and biological (substrate induced respiration) characteristics of three contrasting soils from tropical savanna ecosystems in north Queensland, Australia were measured in field fresh samples and following autoclaving (121 °C/103 kPa for 30 min on two consecutive days). Autoclaving treatment killed the active soil microbial biomass and significantly decreased protease activity (∼90%) in all three soils. Phosphodiesterase activity in kaolinitic soils also significantly decreased by 78% and 92%. However, autoclave treatment of smectitic soil only decreased phosphodiesterase activity by 4% only. This study demonstrates phosphodiesterase can remain stable in extreme conditions. This might be a characteristic vital to the cycling of phosphorus in shrink–swell clays in Australian tropical savanna ecosystems.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
Acid phosphatase production by 12 Hebeloma strains was usually derepressed when inorganic phosphorus in the growth medium was limited, but appeared to be constitutive in some strains. At low temperatures (≤ 12°) arctic strains produced more extracellular and wall-bound acid phosphatase, yet grew more slowly than the temperate strains. We suggest that low growth rates in arctic strains may be a physiological response to cold whereby resources are diverted into carbohydrate accumulation for cryoprotection. At near freezing temperatures, increased extracellular phosphatase production may compensate for a loss of enzyme activity at low temperature and serve to hydrolyse organic phosphorus in frozen soil over winter.
Resumo:
Background and Aims: Phosphate (Pi) is one of the most limiting nutrients for agricultural production in Brazilian soils due to low soil Pi concentrations and rapid fixation of fertilizer Pi by adsorption to oxidic minerals and/or precipitation by iron and aluminum ions. The objectives of this study were to quantify phosphorus (P) uptake and use efficiency in cultivars of the species Coffea arabica L. and Coffea canephora L., and group them in terms of efficiency and response to Pi availability. Methods: Plants of 21 cultivars of C. arabica and four cultivars of C. canephora were grown under contrasting soil Pi availabilities. Biomass accumulation, tissue P concentration and accumulation and efficiency indices for P use were measured. Key Results: Coffee plant growth was significantly reduced under low Pi availability, and P concentration was higher in cultivars of C. canephora. The young leaves accumulated more P than any other tissue. The cultivars of C. canephora had a higher root/shoot ratio and were significantly more efficient in P uptake, while the cultivars of C. arabica were more efficient in P utilization. Agronomic P use efficiency varied among coffee cultivars and E16 Shoa, E22 Sidamo, Iêmen and Acaiá cultivars were classified as the most efficient and responsive to Pi supply. A positive correlation between P uptake efficiency and root to shoot ratio was observed across all cultivars at low Pi supply. These data identify Coffea genotypes better adapted to low soil Pi availabilities, and the traits that contribute to improved P uptake and use efficiency. These data could be used to select current genotypes with improved P uptake or utilization efficiencies for use on soils with low Pi availability and also provide potential breeding material and targets for breeding new cultivars better adapted to the low Pi status of Brazilian soils. This could ultimately reduce the use of Pi fertilizers in tropical soils, and contribute to more sustainable coffee production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)