1000 resultados para Soil consolidation.
Resumo:
In south-eastern Queensland, Australia, sorghum planted in early spring usually escapes sorghum midge, Stenodiplosis sorghicola, attack. Experiments were conducted to better understand the role of winter diapause in the population dynamics of this pest. Emergence patterns of adult midge from diapausing larvae on the soil surface and at various depths were investigated during spring to autumn of 1987/88–1989/90. From 1987/88 to 1989/90, 89%, 65% and 98% of adult emergence, respectively, occurred during November and December. Adult emergence from larvae diapausing on the soil surface was severely reduced due to high mortality attributed to surface soil temperatures in excess of 40°C, with much of this mortality occurring between mid-September and mid-October. Emergence of adults from the soil surface was considerably delayed in the 1988/89 season compared with larvae buried at 5 or 10 cm which had similar emergence patterns for all three seasons. In 1989/90, when a 1-cm-deep treatment was included, there was a 392% increase in adult emergence from this treatment compared with deeper treatments. Some diapausing larvae on the surface did not emerge at the end of summer in only 1 year (1989/90), when 28.0% of the larvae on the surface remained in diapause, whereas only 0.8% of the buried larvae remained in diapause. We conclude that the pattern of emergence explains why spring plantings of sorghum in south-eastern Queensland usually escape sorghum midge attack.
Resumo:
Erosion resistance of pressed soil blocks used for wall construction is discussed. The spray erosion test using a standardized shower spray is discussed. Spray erosion behaviour of pressed soil blocks made out of five different soils is presented. Results of laboratory and field tests are compared. Effect of clay content of the soil and density of the pressed soil block on erosion are discussed. Also the effect of water-proof coatings on erosion of soil blocks is presented. Erosion resistance of soil blocks stabilized with organic (jaggery syrup and starch) or inorganic binders is also discussed.
Resumo:
An urgent need exists for indicators of soil health and patch functionality in extensive rangelands that can be measured efficiently and at low cost. Soil mites are candidate indicators, but their identification and handling is so specialised and time-consuming that their inclusion in routine monitoring is unlikely. The aim of this study was to measure the relationship between patch type and mite assemblages using a conventional approach. An additional aim was to determine if a molecular approach traditionally used for soil microbes could be adapted for soil mites to overcome some of the bottlenecks associated with soil fauna diversity assessment. Soil mite species abundance and diversity were measured using conventional ecological methods in soil from patches with perennial grass and litter cover (PGL), and compared to soil from bare patches with annual grasses and/or litter cover (BAL). Soil mite assemblages were also assessed using a molecular method called terminal-restriction fragment length polymorphism (T-RFLP) analysis. The conventional data showed a relationship between patch type and mite assemblage. The Prostigmata and Oribatida were well represented in the PGL sites, particularly the Aphelacaridae (Oribatida). For T-RFLP analysis, the mite community was represented by a series of DNA fragment lengths that reflected mite sequence diversity. The T-RFLP data showed a distinct difference in the mite assemblage between the patch types. Where possible, T-RFLP peaks were matched to mite families using a reference 18S rDNA database, and the Aphelacaridae prevalent in the conventional samples at PGL sites were identified, as were prostigmatids and oribatids. We identified limits to the T-RFLP approach and this included an inability to distinguish some species whose DNA sequences were similar. Despite these limitations, the data still showed a clear difference between sites, and the molecular taxonomic inferences also compared well with the conventional ecological data. The results from this study indicated that the T-RFLP approach was effective in measuring mite assemblages in this system. The power of this technique lies in the fact that species diversity and abundance data can be obtained quickly because of the time taken to process hundreds of samples, from soil DNA extraction to data output on the gene analyser, can be as little as 4 days.
Resumo:
To improve the sustainability and environmental accountability of the banana industry there is a need to develop a set of soil health indicators that integrate physical, chemical and biological soil properties. These indicators would allow banana growers, extension and research workers to improve soil health management practices. To determine changes in soil properties due to the cultivation of bananas, a paired site survey was conducted comparing soil properties under conventional banana systems to less intensively managed vegetation systems, such as pastures and forest. Measurements were made on physical, chemical and biological soil properties at seven locations in tropical and sub-tropical banana producing areas. Soil nematode community composition was used as a bioindicator of the biological properties of the soil. Soils under conventional banana production tended to have a greater soil bulk density, with less soil organic carbon (C) (both total C and labile C), greater exchangeable cations, higher extractable P, greater numbers of plant-parasitic nematodes and less nematode diversity, relative to less intensively managed plant systems. The organic banana production systems at two locations had greater labile C, relative to conventional banana systems, but there was no significant change in nematode community composition. There were significant interactions between physical, chemical and nematode community measurements in the soil, particularly with soil C measurements, confirming the need for a holistic set of indicators to aid soil management. There was no single indicator of soil health for the Australian banana industry, but a set of soil health indicators, which would allow the measurement of soil improvements should include: bulk density, soil C, pH, EC, total N, extractable P, ECEC and soil nematode community structure.
Resumo:
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70-100 mm and cone index at 180-360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet-dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field--the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.
Resumo:
The leaching of phosphorus (P) within soils can be a limiting consideration for the sustainable operation of intensive livestock enterprises. Sorption curves are widely used to assist estimation of P retention, though the effect of effluent constituents on their accuracy is not well understood. We conducted a series of P-sorption-desorption batch experiments with an Oxic Haplustalf (soil 1), Haplusterts (soils 2 and 3), and a Natrustalf (soil 4). Phosphorus sources included effluent, orthophosphate-P in a matrix replicating the effluent's salt constituents (the reference solution), and an orthophosphate-P solution. Treated soils were incubated for up to 193 days before sequential desorption extraction. Effluent constituents, probably the organic or particulate components, temporarily increased the vulnerability of sorbed-P to desorption. The increase in vulnerability was removed by 2-113 days of incubation (25 degrees C). Despite vigorous extraction for 20 consecutive days, some P sorbed as part of the treatments of soils 1 and 2 was not desorbed. The increased vulnerability due to effluent constituents lasted a maximum of about one cropping season and, for all other treatments, adsorption curves overestimated vulnerability to desorption. Therefore, adsorption curves provide a conservative estimate of vulnerability to desorption where effluent is used in continued crop production in these soils.
Resumo:
Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90-1.10 m soil layer, and soil Cl in the 0.90-1.10 m soil layer, and accounted for 77-85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0-0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.
Resumo:
The fate of nitrogen (N) applied in biosolids was investigated in a forage production system on an alluvial clay loam soil in south-eastern Queensland, Australia. Biosolids were applied in October 2002 at rates of 6, 12, 36, and 54dryt/ha for aerobically digested biosolids (AE) and 8, 16, 48, and 72dryt/ha for anaerobically digested biosolids (AN). Rates were based on multiples of the Nitrogen Limited Biosolids Application rate (0.5, 1, 3, and 4.5NLBAR) for each type of biosolid. The experiment included an unfertilised control and a fertilised control that received multiple applications of synthetic fertiliser. Forage sorghum was planted 1 week after biosolids application and harvested 4 times between December 2002 and May 2003. Dry matter production was significantly greater from the biosolids-treated plots (21-27t/ha) than from the unfertilised (16t/ha) and fertilised (18t/ha) controls. The harvested plant material removed an extra 148-488kg N from the biosolids-treated plots. Partial N budgets were calculated for the 1NLBAR and 4.5NLBAR treatments for each biosolids type at the end of the crop season. Crop removal only accounted for 25-33% of the applied N in the 1NLBAR treatments and as low as 8-15% with 4.5NLBAR. Residual biosolids N was predominantly in the form of organic N (38-51% of applied biosolids N), although there was also a significant proportion (10-23%) as NO3-N, predominantly in the top 0.90m of the soil profile. From 12 to 29% of applied N was unaccounted for, and presumed to be lost as gaseous nitrogen and/or ammonia, as a consequence of volatilisation or denitrification, respectively. In-season mineralisation of organic N in biosolids was 43-59% of the applied organic N, which was much greater than the 15% (AN)-25% (AE) expected, based on current NLBAR calculation methods. Excessive biosolids application produced little additional biomass but led to high soil mineral N concentrations that were vulnerable to multiple loss pathways. Queensland Guidelines need to account for higher rates of mineralisation and losses via denitrification and volatilisation and should therefore encourage lower application rates to achieve optimal plant growth and minimise the potential for detrimental impacts on the environment.
Resumo:
The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season.
Resumo:
The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Resumo:
Thirty-seven surface (0-0.10 or 0-0.20 m) soils covering a wide range of soil types (16 Vertosols, 6 Ferrosols, 6 Dermosols, 4 Hydrosols, 2 Kandosols, 1 Sodosol, 1 Rudosol, and 1 Chromosol) were exhaustively cropped in 2 glasshouse experiments. The test species were Panicum maximum cv. Green Panic in Experiment A and Avena sativa cv. Barcoo in Experiment B. Successive forage harvests were taken until the plants could no longer grow in most soils because of severe potassium (K) deficiency. Soil samples were taken prior to cropping and after the final harvest in both experiments, and also after the initial harvest in Experiment B. Samples were analysed for solution K, exchangeable K (Exch K), tetraphenyl borate extractable K for extraction periods of 15 min (TBK15) and 60 min (TBK60), and boiling nitric acid extractable K (Nitric K). Inter-correlations between the initial levels of the various soil K parameters indicated that the following pools were in sequential equilibrium: solution K, Exch K, fast release fixed K [estimated as (TBK15-Exch K)], and slow release fixed K [estimated as (TBK60-TBK15)]. Structural K [estimated as (Nitric K-TBK60)] was not correlated with any of the other pools. However, following exhaustive drawdown of soil K by cropping, structural K became correlated with solution K, suggesting dissolution of K minerals when solution K was low. The change in the various K pools following cropping was correlated with K uptake at Harvest 1 ( Experiment B only) and cumulative K uptake ( both experiments). The change in Exch K for 30 soils was linearly related to cumulative K uptake (r = 0.98), although on average, K uptake was 35% higher than the change in Exch K. For the remaining 7 soils, K uptake considerably exceeded the change in Exch K. However, the changes in TBK15 and TBK60 were both highly linearly correlated with K uptake across all soils (r = 0.95 and 0.98, respectively). The slopes of the regression lines were not significantly different from unity, and the y-axis intercepts were very small. These results indicate that the plant is removing K from the TBK pool. Although the change in Exch K did not consistently equate with K uptake across all soils, initial Exch K was highly correlated with K uptake (r = 0.99) if one Vertosol was omitted. Exchangeable K is therefore a satisfactory diagnostic indicator of soil K status for the current crop. However, the change in Exch K following K uptake is soil-dependent, and many soils with large amounts of TBK relative to Exch K were able to buffer changes in Exch K. These soils tended to be Vertosols occurring on floodplains. In contrast, 5 soils (a Dermosol, a Rudosol, a Kandosol, and 2 Hydrosols) with large amounts of TBK did not buffer decreases in Exch K caused by K uptake, indicating that the TBK pool in these soils was unavailable to plants under the conditions of these experiments. It is likely that K fertiliser recommendations will need to take account of whether the soil has TBK reserves, and the availability of these reserves, when deciding rates required to raise exchangeable K status to adequate levels.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.
Resumo:
The effects of inorganic amendments (fertilisers and pesticides) on soil biota that are reported in the scientific literature are, to say the least, variable. Though there is clear evidence that certain products can have significant impacts, the effects can be positive or negative. This is not surprising when you consider the number of organisms and amount of different functional groups, the number of products and various rates at which they could be applied, the methods of application and the environmental differences that occur in soil at a micro scale (within centimetres) in a paddock, let alone between paddocks, farms, catchments, regions etc. It therefore becomes extremely difficult to draw definitive conclusions from the reported results in order to summarise the impacts of these inputs. Several research trials and review papers have been published on this subject and most similarly conclude that the implications of many of the effects are still uncertain.