962 resultados para Sodium-channel


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. METHODS: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). RESULTS: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). CONCLUSION: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudohypoaldosteronism type 1 (PHA1) is a monogenic disorder of mineralocorticoid resistance characterized by salt wasting, hyperkalemia, high aldosterone levels, and failure to thrive. An autosomal recessive form (AR-PHA1) is caused by mutations in the epithelial sodium channel ENaC with usually severe and persisting multiorgan symptoms. The autosomal dominant form of PHA1 (AD-PHA1) is due to mutations in the mineralocorticoid receptor causing milder and transient symptoms restricted to the kidney. We identified a homozygous missense mutation in the SCNN1A gene (c.727T>C/p.Ser(243)Pro), encoding α-subunit of ENaC (α-ENaC) in a prematurely born boy with a severe salt-losing syndrome. The patient improved rapidly under treatment, and dietary salt supplementation could be stopped after 6 mo. Interestingly, the patient's sibling born at term and harboring the same homozygous Ser(243)Pro mutation showed no symptom of salt-losing nephropathy. In vitro expression of the αSer(243)Pro ENaC mutant revealed a slight but significant decrease in ENaC activity that is exacerbated in the presence of high Na(+) load. Our study provides the first evidence that ENaC activity is critical for the maintenance of salt balance in the immature kidney of preterm babies. Together with previous studies, it shows that, when the kidney is fully mature, the severity of the symptoms of AR-PHA1 is related to the degree of the ENaC loss of function. Finally, this study identifies a novel functional domain in the extracellular loop of ENaC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative importance of molecular biology in clinical practice is often underestimated. However, numerous procedures in clinical diagnosis and new therapeutic drugs have resulted from basic molecular research. Furthermore, understanding of the physiological and physiopathological mechanisms underlying several human diseases has been improved by the results of basic molecular research. For example, cloning of the gene encoding leptin has provided spectacular insights into the understanding of the mechanisms involved in the control of food intake and body weight maintenance in man. In cystic fibrosis, the cloning and identification of several mutations in the gene encoding the chloride channel transmembrane regulator (CFTR) have resolved several important issues in clinical practice: cystic fibrosis constitutes a molecular defect of a single gene. There is a strong correlation between the clinical manifestations or the severity of the disease (phenotype) with the type of mutations present in the CFTR gene (genotype). More recently, identification of mutations in the gene encoding a subunit of the renal sodium channel in the Liddle syndrome has provided important insight into the physiopathological understanding of mechanisms involved in this form of hereditary hypertension. Salt retention and secondary high blood pressure are the result of constitutive activation of the renal sodium channel by mutations in the gene encoding the renal sodium channel. It is speculated that less severe mutations in this channel could result in a less severe form of hypertension which may correspond to patients suffering from high blood pressure with low plasma renin activity. Several tools, most notably PCR, are derived from molecular research and are used in everyday practice, i.e. in prenatal diagnosis and in the diagnosis of several infectious diseases including tuberculosis and hepatitis. Finally, the production of recombinant proteins at lower cost and with fewer side effects is used in everyday clinical practice. Gene therapy remains an extraordinary challenge in correcting severe hereditary or acquired diseases. The use of genetically modified animal cell lines producing growth factors, insulin or erythropoetin, which are subsequently encapsulated and transferred to man, represents an attractive approach for gene therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is currently a lack of guidance on methodology and special considerations for transitioning patients from oxcarbazepine (OXC) or carbamazepine (CBZ) to eslicarbazepine acetate (ESL), if deemed clinically necessary. An advisory panel of epilepsy experts was convened to share their experience on the use of adjunctive ESL in clinical practice and to provide practical recommendations to help address this gap. When changing over from OXC to ESL, an OXC:ESL dose ratio of 1:1 should be employed to calculate the ESL target dose, and the changeover can take place overnight. No changes to comedication are required. Since CBZ has a different mechanism of action to ESL and is a stronger inducer of cytochrome P450 (CYP) enzymes, the transitioning of patients from CBZ to ESL requires careful consideration on a patient-by-patient basis. In general, a CBZ:ESL dose ratio of 1:1.3 should be employed to calculate the ESL target dose, and patients should be transitioned over a minimum period of 1-2weeks. Special considerations include adjustment of titration schedule and target dose in elderly patients and those with hepatic or renal impairment and potential adjustment of comedications metabolized by CYP enzymes. In summary, due to structural distinctions between ESL, OXC, and CBZ, which affect mechanism of action and tolerability, there are clinical situations in which it may be appropriate to consider transitioning patients from OXC or CBZ to ESL. Changing patients over from OXC to ESL is generally more straightforward than transitioning patients from CBZ to ESL, which requires careful consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many theories about the mechanism of action of local anesthetics (LA) are described in the literature. Two types of theories can be distinguished: those that focus on the direct effects of LA on their target protein in the axon membranes, i.e. the voltage-gated sodium channel and the ones that take into account the interaction of anesthetic molecules with the lipid membrane phase for the reversible nerve blockage. Since there is a direct correlation between LA hydrophobicity and potency, it is crucial to take this physico-chemical property into account to understand the mechanism of action of LA, be it on the sodium channel protein, lipid(s), or on the whole membrane phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les syndromes myotoniques congénitaux atypiques dus à des mutations du canal sodé voltage-dépendant Nav1.4 se distinguent des myotonies congénitales classiques (canal chlore ClC-1) par la présence de traits atypiques incluant des myotonies douloureuses aggravées au froid et à l’ingestion de potassium. La caractérisation clinique et moléculaire de plusieurs familles atteintes de ces conditions rares dans la région du Saguenay-Lac-St-Jean nous a permis de découvrir une nouvelle mutation SCN4A à effet fondateur causant un phénotype de myotonies douloureuses aggravées au froid, parfois accompagné de phénomènes dystrophiques ou paralytiques. L’ampleur de notre cohorte nous permet de commenter sur l’hétérogénité phénotypique observée, sur les traits caractéristiques des syndromes associés au gène SCN4A, sur les implications physiologiques probables d’une telle mutation ainsi que sur les facteurs modulant le phénotype observé. Enfin, notre étude nous permet de souligner l’importance du dépistage familial systématique afin de prévenir les complications anesthésiques potentielles associées à ces conditions.