997 resultados para Small grains
Resumo:
Purpose – The purpose of this paper is to investigate whether new and young firms are different from older firms. This analysis is undertaken to explore general characteristics, use of external resources and growth orientation. Design/methodology/approach – Data from the 2008 UK Federation of Small Businesses survey provided 8,000 responses. Quantitative analysis identified significantly different characteristics of firms from 0-4, 4-9, 9-19 and 20+ years. Factor analysis was utilised to identify the advice sets, finance and public procurement customers of greatest interest, with ANOVA used to statistically compare firms in the identified age groups with different growth aspirations. Findings – The findings reveal key differences between new, young and older firms in terms of characteristics including business sector, owner/manager age, education/business experience, legal status, intellectual property and trading performance. New and young firms were more able to access beneficial resources in terms of finance and advice from several sources. New and young firms were also able to more easily access government and external finance, as well as government advice, but less able to access public procurement. Research limitations/implications – New and young firms are utilising external networks to access several resources for development purposes, and this differs for older firms. This suggests that a more explicit age-differentiated focus is required for government policies aimed at supporting firm growth. Originality/value – The study provides important baseline data for future quantitative and qualitative studies focused on the impact of firm age and government policy.
Resumo:
Due to their small collecting volume diodes are commonly used in small field dosimetry. However the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm . The metric D_(w,Q)/D_(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D_(w,Q)/D_(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D_(w,Q)/D_(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3 mm, 1.15 mm and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_(Q_clin 〖,Q〗_msr)^(f_clin 〖,f〗_msr ) was equal to unity to within statistical uncertainty (0.5 %) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.
Resumo:
Experimentally, hydrogen-free diamond-like carbon (DLC) films were assembled by means of pulsed laser deposition (PLD), where energetic small-carbon-clusters were deposited on the substrate. In this paper, the chemisorption of energetic C2 and C10 clusters on diamond (001)-( 2×1) surface was investigated by molecular dynamics simulation. The influence of cluster size and the impact energy on the structure character of the deposited clusters is mainly addressed. The impact energy was varied from a few tens eV to 100 eV. The chemisorption of C10 was found to occur only when its incident energy is above a threshold value ( E th). While, the C2 cluster was easily to adsorb on the surface even at much lower incident energy. With increasing the impact energy, the structures of the deposited C2 and C10 are different from the free clusters. Finally, the growth of films synthesized by energetic C2 and C10 clusters were simulated. The statistics indicate the C2 cluster has high probability of adsorption and films assembled of C2 present slightly higher SP3 fraction than that of C10-films, especially at higher impact energy and lower substrate temperature. Our result supports the experimental findings. Moreover, the simulation underlines the deposition mechanism at atomic scale.
Resumo:
Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10% to 40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.
Resumo:
Knowledge Integration (KI) is one of the major aspects driving innovation within an organisation. In this paper, we attempt to develop a better understanding of the challenges of knowledge integration within the innovation process in technology-based firms. Using four technology-based Australian firms, we investigated how knowledge integration may be managed within the context of innovation in technology firms. The literature highlights the role of four KI tasks that affect the innovation capability within technology-oriented firms, namely team building capability, capturing tacit knowledge, role of KM systems and technological systemic integration. Our findings indicate that in addition to the four tasks, a strategic approach to integrating knowledge for innovation as well as leadership and management are essential to achieving effective KI across multiple levels of engagement. Our findings also offer practical insights of how knowledge can be integrated within innovation process.
Resumo:
On 21 September 1999 Division 152 was inserted into the Income Tax Assessment Act (1997) (ITAA 1997). It was subsequently subject to amendments in 2006. Division 152 contains the small business CGT concessions, which enables eligible small business taxpayers to reduce the amount of tax payable on capital gains arising from certain CGT events (including the sale of the small business itself) that occur after 11:45 am on 21 September 1999. One of the stated principal objectives of the legislation was to provide a concessionary regime for small business owners who did not have the same ability to access the concessionary superannuation regime (particularly the superannuation guarantee charge) generally available to employees. The then Federal Treasurer, Mr Peter Costello, when announcing the introduction of the concessions, specifically stated that the object of Div 152 was to provide “small business people with access to funds for retirement or expansion”. The purpose of this project is to: one, assess the extent to which small business taxpayers understand the CGT small business concessions, particularly when considering sale of their business; two, determine which of the four small business CGT concessions are being adopted and/or recommended by tax advisors to clients; and three, determine whether the recent superannuation changes announced by the Federal Government in relation to the capping of the concessional superannuation thresholds have had an impact on the use of the small business retirement concession. It is anticipated that the results of this study will reveal that that small business owners are reliant on their tax advisors to explain the operation of Division 152. It is plausible that give the complexity of the CGT concessions, most small business owners are completely unaware of the four small business CGT concessions contained in Division 152 and do not understand how these concessions apply. Our study will also reveal the extent to which each CGT small business concession has been adopted (and reasons why). In particular, emphasis will be placed on the adoption of the small business retirement concession contained in Subdivision 152-D (and specific reasons for its adoption). This study also seeks to understand whether the recent (and impending) changes to the concessional superannuation cap has resulted in the retirement concession being more widely adopted (or recommended) by tax advisors. We would expect that the results of our study to confirm this to be the case, particularly coupled with the recent economic downturn, which has led to lower superannuation fund balances. By providing accounting firms with this information, small business owners will benefit from the information, becoming better placed to be long-term self funded retirees, providing not only financial benefits to the individuals and the country, but a significant increase in social self-assurance by these members of the community.
Resumo:
The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
A Neutral cluster and Air Ion Spectrometer (NAIS) was used to monitor the concentration of airborne ions on 258 full days between Nov 2011 and Dec 2012 in Brisbane, Australia. The air was sampled from outside a window on the sixth floor of a building close to the city centre, approximately 100 m away from a busy freeway. The NAIS detects all ions and charged particles smaller than 42 nm. It was operated in a 4 min measurement cycle, with ion data recorded at 10 s intervals over 2 min during each cycle. The data were analysed to derive the diurnal variation of small, large and total ion concentrations in the environment. We adapt the definition of Horrak et al (2000) and classify small ions as molecular clusters smaller than 1.6 nm and large ions as charged particles larger than this size...
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Dr. Rene Bakker, examines the evidence on the effects of a entrepreneurs’ personal networks on small firm performance, and the factors that moderate this relationship.
Resumo:
The market of building retrofits is increasingly more intensified as existing buildings are aging. The building retrofit projects involve existing buildings which impose constraints on stakeholders throughout the project process. They are also risky, complex, less predictable and difficult to be well planned with on-site waste becoming one of the critical issues. Small and Medium Enterprises (SMEs) carry out most of the work in retrofit projects as subcontractors, but they often do not have adequate resources to deal with the specific technical challenges and project risks related to waste. This paper first discusses the requirements of waste management in building retrofit projects considering specific project characteristics and work natures, and highlights the importance of involving SMEs in waste planning and management through an appropriate way. By utilizing semi-structured interviews, this research develops a process model for SMEs to be applied in waste management. A collaboration scenario is also developed for collaborative waste planning and management by SMEs as subcontractors and large companies as main contractors. Findings from the paper will promote coordination of project delivery and waste management in building retrofit projects, and improve the involvement and performance of SMEs in dealing with waste problems.
Resumo:
In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective.
Resumo:
A method for producing metal oxide particles having nano-sized grains is disclosed. A solution of metal cations is mixed with surfactant under conditions such that surfactant micelles are formed. This mixture is then heated to form the metal oxide particles; this heating step removing the surfactant, forming the metal oxide and creating the pore structure of the particles. The pore structures are disordered. This method is particularly advantageous for production of complex (multi-component) metal oxides in which the different atomic species are homogeneously dispersed.
Resumo:
This monograph is a welcome investigation of current issues in rural health service delivery in smaller communities. The underlying assumption is that existing health service frameworks for rural and remote communities with populations of less than 230 are simply- not appropriate for their needs. With this in mind, the authors identify the strengths and weaknesses of frameworks presently utilised, and offer viable alternatives. They have made information accessible to those who wish to improve the delivery of rural health care, and have provided a catalyst for further research and dialogue on rural health issues...