929 resultados para Small Signal Stability
Resumo:
Les convertisseurs de longueur d’onde sont essentiels pour la réalisation de réseaux de communications optiques à routage en longueur d’onde. Dans la littérature, les convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur constituent une solution extrêmement intéressante, et ce, en raison de leurs nombreuses caractéristiques nécessaires à l’implémentation de tels réseaux de communications. Avec l’émergence des systèmes commerciaux de détection cohérente, ainsi qu’avec les récentes avancées dans le domaine du traitement de signal numérique, il est impératif d’évaluer la performance des convertisseurs de longueur d’onde, et ce, dans le contexte des formats de modulation avancés. Les objectifs de cette thèse sont : 1) d’étudier la faisabilité des convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur pour les formats de modulation avancés et 2) de proposer une technique basée sur le traitement de signal numérique afin d’améliorer leur performance. En premier lieu, une étude expérimentale de la conversion de longueur d’onde de formats de modulation d’amplitude en quadrature (quadrature amplitude modulation - QAM) est réalisée. En particulier, la conversion de longueur d’onde de signaux 16-QAM à 16 Gbaud et 64-QAM à 5 Gbaud dans un amplificateur optique à semi-conducteur commercial est réalisée sur toute la bande C. Les résultats démontrent qu’en raison des distorsions non-linéaires induites sur le signal converti, le point d’opération optimal du convertisseur de longueur d’onde est différent de celui obtenu lors de la conversion de longueur d’onde de formats de modulation en intensité. En effet, dans le contexte des formats de modulation avancés, c’est le compromis entre la puissance du signal converti et les non-linéarités induites qui détermine le point d’opération optimal du convertisseur de longueur d’onde. Les récepteurs cohérents permettent l’utilisation de techniques de traitement de signal numérique afin de compenser la détérioration du signal transmis suite à sa détection. Afin de mettre à profit les nouvelles possibilités offertes par le traitement de signal numérique, une technique numérique de post-compensation des distorsions induites sur le signal converti, basée sur une analyse petit-signal des équations gouvernant la dynamique du gain à l’intérieur des amplificateurs optiques à semi-conducteur, est développée. L’efficacité de cette technique est démontrée à l’aide de simulations numériques et de mesures expérimentales de conversion de longueur d’onde de signaux 16-QAM à 10 Gbaud et 64-QAM à 5 Gbaud. Cette méthode permet d’améliorer de façon significative les performances du convertisseur de longueur d’onde, et ce, principalement pour les formats de modulation avancés d’ordre supérieur tel que 64-QAM. Finalement, une étude expérimentale exhaustive de la technique de post-compensation des distorsions induites sur le signal converti est effectuée pour des signaux 64-QAM. Les résultats démontrent que, même en présence d’un signal à bruité à l’entrée du convertisseur de longueur d’onde, la technique proposée améliore toujours la qualité du signal reçu. De plus, une étude du point d’opération optimal du convertisseur de longueur d’onde est effectuée et démontre que celui-ci varie en fonction des pertes optiques suivant la conversion de longueur d’onde. Dans un réseau de communication optique à routage en longueur d’onde, le signal est susceptible de passer par plusieurs étages de conversion de longueur d’onde. Pour cette raison, l’efficacité de la technique de post-compensation est démontrée, et ce pour la première fois dans la littérature, pour deux étages successifs de conversion de longueur d’onde de signaux 64-QAM à 5 Gbaud. Les résultats de cette thèse montrent que les convertisseurs de longueur d’ondes basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur, utilisés en conjonction avec des techniques de traitement de signal numérique, constituent une technologie extrêmement prometteuse pour les réseaux de communications optiques modernes à routage en longueur d’onde.
Resumo:
Terahertz (THz) technology has been generating a lot of interest because of the potential applications for systems working in this frequency range. However, to fully achieve this potential, effective and efficient ways of generating controlled signals in the terahertz range are required. Devices that exhibit negative differential resistance (NDR) in a region of their current-voltage (I-V ) characteristics have been used in circuits for the generation of radio frequency signals. Of all of these NDR devices, resonant tunneling diode (RTD) oscillators, with their ability to oscillate in the THz range are considered as one of the most promising solid-state sources for terahertz signal generation at room temperature. There are however limitations and challenges with these devices, from inherent low output power usually in the range of micro-watts (uW) for RTD oscillators when milli-watts (mW) are desired. At device level, parasitic oscillations caused by the biasing line inductance when the device is biased in the NDR region prevent accurate device characterisation, which in turn prevents device modelling for computer simulations. This thesis describes work on I-V characterisation of tunnel diode (TD) and RTD (fabricated by Dr. Jue Wang) devices, and the radio frequency (RF) characterisation and small signal modelling of RTDs. The thesis also describes the design and measurement of hybrid TD oscillators for higher output power and the design and measurement of a planar Yagi antenna (fabricated by Khalid Alharbi) for THz applications. To enable oscillation free current-voltage characterisation of tunnel diodes, a commonly employed method is the use of a suitable resistor connected across the device to make the total differential resistance in the NDR region positive. However, this approach is not without problems as the value of the resistor has to satisfy certain conditions or else bias oscillations would still be present in the NDR region of the measured I-V characteristics. This method is difficult to use for RTDs which are fabricated on wafer due to the discrepancies in designed and actual resistance values of fabricated resistors using thin film technology. In this work, using pulsed DC rather than static DC measurements during device characterisation were shown to give accurate characteristics in the NDR region without the need for a stabilisation resistor. This approach allows for direct oscillation free characterisation for devices. Experimental results show that the I-V characterisation of tunnel diodes and RTD devices free of bias oscillations in the NDR region can be made. In this work, a new power-combining topology to address the limitations of low output power of TD and RTD oscillators is presented. The design employs the use of two oscillators biased separately, but with the combined output power from both collected at a single load. Compared to previous approaches, this method keeps the frequency of oscillation of the combined oscillators the same as for one of the oscillators. Experimental results with a hybrid circuit using two tunnel diode oscillators compared with a single oscillator design with similar values shows that the coupled oscillators produce double the output RF power of the single oscillator. This topology can be scaled for higher (up to terahertz) frequencies in the future by using RTD oscillators. Finally, a broadband Yagi antenna suitable for wireless communication at terahertz frequencies is presented in this thesis. The return loss of the antenna showed that the bandwidth is larger than the measured range (140-220 GHz). A new method was used to characterise the radiation pattern of the antenna in the E-plane. This was carried out on-wafer and the measured radiation pattern showed good agreement with the simulated pattern. In summary, this work makes important contributions to the accurate characterisation and modelling of TDs and RTDs, circuit-based techniques for power combining of high frequency TD or RTD oscillators, and to antennas suitable for on chip integration with high frequency oscillators.
Resumo:
Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.
Resumo:
Free standing diamond films were used to study the effect of diamond surface morphology and microstructure on the electrical properties of Schottky barrier diodes. By using free standing films both the rough top diamond surface and the very smooth bottom surface are available for post-metal deposition. Rectifying electrical contacts were then established either with the smooth or the rough surface. The estimate of doping density from the capacitance-voltage plots shows that the smooth surface has a lower doping density when compared with the top layers of the same film. The results also show that surface roughness does not contribute significantly to the frequency dispersion of the small signal capacitance. The electrical properties of an abrupt asymmetric n(+)(silicon)-p(diamond) junction have also been measured. The I-V curves exhibit at low temperatures a plateau near zero bias, and show inversion of rectification. Capacitance-voltage characteristics show a capacitance minimum with forward bias, which is dependent on the environment conditions. It is proposed that this anomalous effect arises from high level injection of minority carriers into the bulk.
Resumo:
Free standing diamond films were used to study the effect of diamond surface morphology and microstructure on the electrical properties of Schottky barrier diodes. By using free standing films both the rough top diamond surface and the very smooth bottom surface are available for post-metal deposition. Rectifying electrical contacts were then established either with the smooth or the rough surface. The estimate of doping density from the capacitance-voltage plots shows that the smooth surface has a lower doping density when compared with the top layers of the same film. The results also show that surface roughness does not contribute significantly to the frequency dispersion of the small signal capacitance. The electrical properties of an abrupt asymmetric n(+)(silicon)-p(diamond) junction have also been measured. The I-V curves exhibit at low temperatures a plateau near zero bias, and show inversion of rectification. Capacitance-voltage characteristics show a capacitance minimum with forward bias, which is dependent on the environment conditions. It is proposed that this anomalous effect arises from high level injection of minority carriers into the bulk.
Resumo:
Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.
Resumo:
Background Matrix metalloproteinase (MMP)-9 is an endopeptidase that digests basement membrane type-IV collagen. Enhanced expression has been related to tumour progression in a number of systems. The control of MMP expression is complex, but recently epidermal growth actor receptor (EGFR) activity has been implicated in up-regulation of MMP-9 in tumour cells in vitro. Aims To evaluate interrelations between MMP-9 and EGFR expression in non-small cell lung cancer (NSCLC) and to assess the impact of expression on survival. Methods This is a retrospective study of 152 patients who underwent resection for stage I-IIIa NSCLC with a post-operative survival >60 days. Minimum follow-up was 2 years. Standard ABC immunohistochemistry was performed on 4μm paraffin-embedded sections from the tumour periphery using monoclonal antibodies to MMP-9 and EGFR. Results: MMP-9 was expressed in the tumour cells of 79/152 (52%) cases. EGFR expression was found in 86/152 (57%) cases [membranous 51/152 (34%), cytoplasmic 35/152 (23%)]. MMP-9 expression was associated with poor outcome (p=0.04). Membranous, cytoplasmic and overall EGFR expression were not associated with outcome (p=0.29, p=0.85 and p=0.41 respectively). There was a strong correlation between MMP-9 expression and EGFR expression (p=0.001) and EGFR membranous expression (p=0.01) but not with cytoplasmic EGFR expression (p=0.28). Co-expression of MMP-9 and EGFR (36%) conferred a worse prognosis (p=0.003). Subset analysis revealed only MMP-9 and membranous EGFR co-expression (22%) was associated with poor outcome (p=0.008). Conclusions Our results show that MMP-9 and EGFR are co-expressed in NSCLC. This finding suggests the EGFR signalling pathway may play an important role in the invasive behaviour of NSCLC via specific upregulation of MMP-9. The co-expression of these markers also confers a poor prognosis.
Resumo:
A smooth map is said to be stable if small perturbations of the map only differ from the original one by a smooth change of coordinates. Smoothly stable maps are generic among the proper maps between given source and target manifolds when the source and target dimensions belong to the so-called nice dimensions, but outside this range of dimensions, smooth maps cannot generally be approximated by stable maps. This leads to the definition of topologically stable maps, where the smooth coordinate changes are replaced with homeomorphisms. The topologically stable maps are generic among proper maps for any dimensions of source and target. The purpose of this thesis is to investigate methods for proving topological stability by constructing extremely tame (E-tame) retractions onto the map in question from one of its smoothly stable unfoldings. In particular, we investigate how to use E-tame retractions from stable unfoldings to find topologically ministable unfoldings for certain weighted homogeneous maps or germs. Our first results are concerned with the construction of E-tame retractions and their relation to topological stability. We study how to construct the E-tame retractions from partial or local information, and these results form our toolbox for the main constructions. In the next chapter we study the group of right-left equivalences leaving a given multigerm f invariant, and show that when the multigerm is finitely determined, the group has a maximal compact subgroup and that the corresponding quotient is contractible. This means, essentially, that the group can be replaced with a compact Lie group of symmetries without much loss of information. We also show how to split the group into a product whose components only depend on the monogerm components of f. In the final chapter we investigate representatives of the E- and Z-series of singularities, discuss their instability and use our tools to construct E-tame retractions for some of them. The construction is based on describing the geometry of the set of points where the map is not smoothly stable, discovering that by using induction and our constructional tools, we already know how to construct local E-tame retractions along the set. The local solutions can then be glued together using our knowledge about the symmetry group of the local germs. We also discuss how to generalize our method to the whole E- and Z- series.
Resumo:
RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.
Resumo:
This work assesses the performance of small biogas-fuelled engines and explores high-efficiency strategies for power generation in the very low power range of less than 1000 W. Experiments were performed on a small 95-cc, single-cylinder, four-stroke spark-ignition engine operating on biogas. The engine was operated in two modes, i.e., `premixed' and `fuel injection' modes, using both single and dual spark plug configurations. Measurements of in-cylinder pressure, crank angle, brake power, air and fuel flow rates, and exhaust emissions were conducted. Cycle-to-cycle variations in engine in-cylinder pressure and power were also studied and assessed quantitatively for various loading conditions. Results suggest that biogas combustion can be fairly sensitive to the ignition strategies thereby affecting the power output and efficiency. Further, results indicate that continuous fuel injection shows superior performance compared to the premixed case especially at low loads owing to possible charge stratification in the engine cylinder. Overall, this study has demonstrated for the first time that a combination of technologies such as lean burn, fuel injection, and dual spark plug ignition can provide highly efficient and stable operation in a biogas-fuelled small S.I. engine, especially in the low power range of 450-1000W. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.