757 resultados para Situationnal barriers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study which linked demographic variables with barriers affecting the adoption of domestic energy efficiency measures in large UK cities. The aim was to better understand the 'Energy Efficiency Gap' and improve the effectiveness of future energy efficiency initiatives. The data for this study was collected from 198 general population interviews (1.5-10 min) carried out across multiple locations in Manchester and Cardiff. The demographic variables were statistically linked to the identified barriers using a modified chi-square test of association (first order Rao-Scott corrected to compensate for multiple response data), and the effect size was estimated with an odds-ratio test. The results revealed that strong associations exist between demographics and barriers, specifically for the following variables: sex; marital status; education level; type of dwelling; number of occupants in household; residence (rent/own); and location (Manchester/Cardiff). The results and recommendations were aimed at city policy makers, local councils, and members of the construction/retrofit industry who are all working to improve the energy efficiency of the domestic built environment. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the topographical and electrical characterisations of 1 nm thick Al2O3 dielectric films on graphene. The Al 2O3 is grown by sputtering a 0.6 nm Al layer on graphene and subsequentially oxidizing it in an O2 atmosphere. The Al 2O3 layer presents no pinholes and is homogeneous enough to act as a tunnel barrier. A resistance-area product in the mega-ohm micrometer-square range is found. Comparatively, the growth of Al 2O3 by evaporation does not lead to well-wetted films on graphene. Application of this high quality sputtered tunnel barrier to efficient spin injection in graphene is discussed. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate interference effects of the backscattering current through a double-barrier structure in an interacting quantum wire attached to noninteracting leads. Depending on the interaction strength and the location of the barriers, the backscattering current exhibits different oscillation and scaling characteristics with the applied voltage in the strong and weak interaction cases. However, in both cases, the oscillation behaviors of the backscattering current are mainly determined by the quantum mechanical interference due to the existence of the double barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si delta-doped In0.65Ga0.35As/In0.52Al0.48As metamorphic high-electron-mobility transistor with InP substrate in a temperature range between 1.5 and 60 K under magnetic field up to 13 T. We studied the Shubnikov-de Haas (SdH) effect and the Hall effect for the In0.65Ga0.35As/In0.52Al0.48As single quantum well occupied by two subbands and obtained the electron concentration and energy levels respectively. We solve the Schrodinger-Kohn-Sham equation in conjunction with the Poisson equation self-consistently and obtain the configuration of conduction band, the distribution of carriers concentration, the energy level of every subband and the Fermi energy. The calculational results are well consistent with the results of experiments. Both experimental and calculational results indicate that almost all of the delta-doped electrons transfer into the quantum well in the temperature range between 1.5 and 60 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of two kinds of InGaN/GaN quantum-wells light emitting diodes, one of which was doped with Si in barriers while the other was not, are comparatively investigated using time-integrated photoluminescence and time-resolved photoluminescence techniques. The results clearly demonstrate the coexistence of the band gap renormalization and phase-space filling effect in the structures with Si doped barriers. It is surprisingly found that photogenerated carriers in the intentionally undoped structures decay nonexponentially, whereas carriers in the Si doped ones exhibit a well exponential time evolution. A new model developed by O. Rubel, S. D. Baranovskii, K. Hantke, J. D. Heber, J. Koch, P. Thomas, J. M. Marshall, W. Stolz, and W. H. Ruhle [J. Optoelectron. Adv. Mater. 7, 115 (2005)] was used to simulate the decay curves of the photogenerated carriers in both structures, which enables us to determine the localization length of the photogenerated carriers in the structures. It is found that the Si doping in the barriers not only leads to remarkable many-body effects but also significantly affects the carrier recombination dynamics in InGaN/GaN layered heterostructures. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Buttiker dephasing model, the backscattering in the dephasing process is eliminated by setting a proper boundary condition. Explicit expression is carried out for the effective total tunneling probability in the presence of multiple pure dephasing scatterers with partial coherence. The derived formula is illustrated analytically by various limiting cases, and numerically for its application in tunneling through multibarrier systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.