972 resultados para Site Selection
Resumo:
In the present study, the coding region of the H gene was sequenced and analyzed in fourteen genera of New World primates (Alouatta, Aotus, Ateles, Brachyteles, Cacajao, Callicebus, Callithrix, Cebus, Chiropotes, Lagothrix, Leontopithecus, Pithecia, Saguinus, and Saimiri), in order to investigate the evolution of the gene. The analyses revealed that this coding region contains 1,101 nucleotides, with the exception of Brachyteles, the callitrichines (Callithrix, Leontopithecus, and Saguinus) and one species of Callicebus (moloch), in which one codon was deleted. In the primates studied, the high GC content (63%), the nonrandom distribution of codons and the low evolution rate of the gene (0.513 substitutions/site/MA in the order Primates) suggest the action of a purifying type of selective pressure, confirmed by the Z-test. Our analyses did not identify mutations equivalent to those responsible for the H-deficient phenotypes found in humans, nor any other alteration that might explain the lack of expression of the gene in the erythrocytes of Neotropical monkeys. The phylogenetic trees obtained for the H gene and the distance matrix data suggest the occurrence of divergent evolution in the primates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In Brazil, Eucalyptus grandis Hill ex Maiden is widely used for commercial reforestation, especially for production of pulp, paper and energy. Its genetic variability is being explored in tree improvement programs for over 30 years. The objective of this work was to estimate genetic parameters and compare genetic gains by multi-effects index in a breeding population of E. grandis. Progeny tests were established using open-pollinated seeds from ten provenances ranging from 153 to 160 progenies established in a completely randomized block design in four sites of Sao Paulo State (Anhembi, Avere Itarare e Pratania). At 24 months of age the traits diameter at breast height (DBH), height (ALT) and volume (VOL) were measured. The individual site analyses indicated significant genetic differences among progenies, height genetic variability and the mean progeny heritability (> 0.70). For joint analyses of sites, significant differences in genotype x environmental interaction effects were detected, showing differences of performance of the progenies in different sites. The Itarare site gave high genetic gains, effective size and genetic diversity. The genetic diversity and low effective size are unviable factors; considering that the progeny tests studied should retain adequate levels of genetic variability in order to be transformed in future seedling seed orchards.
Resumo:
In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.
Resumo:
The quality of astronomical sites is the first step to be considered to have the best performances from the telescopes. In particular, the efficiency of large telescopes in UV, IR, radio etc. is critically dependent on atmospheric transparency. It is well known that the random optical effects induced on the light propagation by turbulent atmosphere also limit telescope’s performances. Nowadays, clear appears the importance to correlate the main atmospheric physical parameters with the optical quality reachable by large aperture telescopes. The sky quality evaluation improved with the introduction of new techniques, new instrumentations and with the understanding of the link between the meteorological (or synoptical parameters and the observational conditions thanks to the application of the theories of electromagnetic waves propagation in turbulent medias: what we actually call astroclimatology. At the present the site campaigns are evolved and are performed using the classical scheme of optical seeing properties, meteorological parameters, sky transparency, sky darkness and cloudiness. New concept are added and are related to the geophysical properties such as seismicity, microseismicity, local variability of the climate, atmospheric conditions related to the ground optical turbulence and ground wind regimes, aerosol presence, use of satellite data. The purpose of this project is to provide reliable methods to analyze the atmospheric properties that affect ground-based optical astronomical observations and to correlate them with the main atmospheric parameters generating turbulence and affecting the photometric accuracy. The first part of the research concerns the analysis and interpretation of longand short-time scale meteorological data at two of the most important astronomical sites located in very different environments: the Paranal Observatory in the Atacama Desert (Chile), and the Observatorio del Roque de Los Muchachos(ORM) located in La Palma (Canary Islands, Spain). The optical properties of airborne dust at ORM have been investigated collecting outdoor data using a ground-based dust monitor. Because of its dryness, Paranal is a suitable observatory for near-IR observations, thus the extinction properties in the spectral range 1.00-2.30 um have been investigated using an empirical method. Furthermore, this PhD research has been developed using several turbulence profilers in the selection of the site for the European Extremely Large Telescope(E-ELT). During the campaigns the properties of the turbulence at different heights at Paranal and in the sites located in northern Chile and Argentina have been studied. This given the possibility to characterize the surface layer turbulence at Paranal and its connection with local meteorological conditions.
Resumo:
The UNESCO listing as World Heritage Site confirms the outstanding qualities of the high-mountain region around the Great Aletsch Glacier. The region of the World Heritage Site now faces the responsibility to make these qualities visible and to preserve them for future generations. Consequently the qualities of the site must not be regarded in isolation but in the context of the entire region with its dynamics and developments. Regional monitoring is the observation and evaluation of temporal changes in target variables. It is thus an obligation towards UNESCO, who demands regular reports about the state of the listed World Heritage assets. It also allows statements about sustainable regional development and can be the basis for early recognition of threats to the outstanding qualities. Monitoring programmes face three major challenges: first, great care must be taken in defining the target qualities to be monitored or the monitoring would remain vague. Secondly, the selection of ideal indicators to describe these qualities is impeded by inadequate data quality and availability, compromises are inevitable. Thirdly, there is always an element of insecurity in the interpretation of the results as to what influences and determines the changes in the target qualities. The first survey of the monitoring programme confirmed the exceptional qualities of the region and also highlighted problematic issues.
Resumo:
BACKGROUND: All site-specific interactions between HIV type-1 (HIV-1) subtype, human leukocyte antigen (HLA)-associated immune selection and integrase inhibitor resistance are not completely understood. We examined naturally occurring polymorphisms in HIV-1 integrase sequences from 342 antiretroviral-naive individuals from the Western Australian HIV Cohort Study and the Swiss HIV Cohort Study. METHODS: Standard bulk sequencing and sequence-based typing were used to generate integrase sequences and high-resolution HLA genotypes, respectively. Viral residues were examined with respect to drug resistance mutations and CD8(+) T-cell escape mutations. RESULTS: In both predominantly subtype B cohorts, 12 of 38 sites that mediate integrase inhibitor resistance mutations were absolutely conserved, and these included the primary resistance mutations. There were 18 codons with non-primary drug resistance-associated substitutions at rates of up to 58.8% and eight sites with alternative polymorphisms. Five viral residues were potentially subject to dual-drug and HLA-associated immune selection in which both selective pressures either drove the same amino acid substitution (codons 72, 157 and 163) or HLA alleles were associated with an alternative polymorphism that would alter the genetic barrier to resistance (codons 125 and 193). The common polymorphism T125A, which was characteristic of non-subtype B and was also associated with carriage of HLA-B*57/*5801, increased the mutational barrier to the resistance mutation T125K. CONCLUSIONS: Primary integrase inhibitor resistance mutations were not detected in the absence of drug exposure in keeping with sites of high constraint. Viral polymorphisms caused by immune selection and/or associated with non-subtype B might alter the genetic barrier to some non-primary resistance-associated mutations.
Resumo:
These guidelines were developed in the context of working block 3 of the DESIRE project. They address the facilitators in the 18 DESIRE study sites and support them in conducting stakeholder workshops aiming at the selection and decision on mitigation strategies to be implemented in the study site context. The decision-making process is supported by a multi-objective decision support system (MODSS) Software called 'Facilitator'.
Resumo:
Natural selection is one of the major factors in the evolution of all organisms. Detecting the signature of natural selection has been a central theme in evolutionary genetics. With the availability of microsatellite data, it is of interest to study how natural selection can be detected with microsatellites. ^ The overall aim of this research is to detect signatures of natural selection with data on genetic variation at microsatellite loci. The null hypothesis to be tested is the neutral mutation theory of molecular evolution, which states that different alleles at a locus have equivalent effects on fitness. Currently used tests of this hypothesis based on data on genetic polymorphism in natural populations presume that mutations at the loci follow the infinite allele/site models (IAM, ISM), in the sense that at each site at most only one mutation event is recorded, and each mutation leads to an allele not seen before in the population. Microsatellite loci, which are abundant in the genome, do not obey these mutation models, since the new alleles at such loci can be created either by contraction or expansion of tandem repeat sizes of core motifs. Since the current genome map is mainly composed of microsatellite loci and this class of loci is still most commonly studied in the context of human genome diversity, this research explores how the current test procedures for testing the neutral mutation hypothesis should be modified to take into account a generalized model of forward-backward stepwise mutations. In addition, recent literature also suggested that past demographic history of populations, presence of population substructure, and varying rates of mutations across loci all have confounding effects for detecting signatures of natural selection. ^ The effects of the stepwise mutation model and other confounding factors on detecting signature of natural selection are the main results of the research. ^
Resumo:
The effect of type of fiber, site of fermetation, method for quantifying insoluble and soluble dietary fiber, and their correction for intestinal mucin on fiber digestibility were examined in rabbits. Three diets differing in soluble fiber were formulated (8.5% soluble fiber, on DM basis, in the low soluble fiber [LSF] diet; 10.2% in the medium soluble fiber [MSF] diet; and 14.5% in the high soluble fiber [HSF] diet). They were obtained by replacing half of the dehydrated alfalfa in the MSF diet with a mixture of beet and apple pulp (HSF diet) or with a mix of oat hulls and soybean protein (LSF diet). Thirty rabbits with ileal T-cannulas were used to determine ileal and fecal digestibility. Cecal digestibility was determined by difference between fecal and ileal digestibility. Insoluble fiber was measured as NDF, insoluble dietary fiber (IDF), and in vitro insoluble fiber, whereas soluble fiber was calculated as the difference between total dietary fiber (TDF) and NDF (TDF_NDF), IDF (TDF-IDF), and in vitro insoluble fiber (TDF-in vitro insoluble fiber). The intestinal mucin content was used to correct the TDF and soluble fiber digestibility. Ileal and fecal concentration of mucin increased from the LSF to the HSF diet group (P < 0.01). Once corrected for intestinal mucin, ileal and fecal digestibility of TDF and soluble fiber increased whereas cecal digestibility decreased (P < 0.01). Ileal digestibility of TDF increased from the LSF to the HSF diet group (12.0 vs. 28.1%; P < 0.01), with no difference in the cecum (26.4%), resulting in a higher fecal digestibility from the LSF to the HSF diet group (P < 0.01). Ileal digestibility of insoluble fiber increased from the LSF to the HSF diet group (11.3 vs. 21.0%; P < 0.01), with no difference in the cecum (13.9%) and no effect of fiber method, resulting in a higher fecal digestibility for rabbits fed the HSF diet compared with the MSF and LSF diets groups (P < 0.01).Fecal digestibility of NDF was higher compared with IDF or in vitro insoluble fiber (P < 0.01). Ileal soluble fiber digestibility was higher for the HSF than for the LSF diet group (43.6 vs. 14.5%; P < 0.01) and fiber method did not affect it. Cecal soluble fiber digestibility decreased from the LSF to the HSF diet group (72.1 vs. 49.2%; P < 0.05). The lowest cecal and fecal soluble fiber digestibility was measured using TDF-NDF (P < 0.01). In conclusion, a correction for intestinal mucin is necessary for ileal TDF and soluble fiber digestibility whereas the selection of the fiber method has a minor relevance. The inclusion of sugar beet and apple pulp increased the amount of TDF fermented in the small intestine.
Resumo:
In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an “orthogonal” suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)–tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase–tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein–tRNA interface and at sites further away, is discussed.
Resumo:
RNAs that undergo a rapid site-specific cleavage at low pH have been selected by in vitro selection (the SELEX process). The cleavage does not require the addition of any divalent metal ions, and is in fact inhibited by divalent metal ions, spermine, or high concentrations of monovalent metal ions. This low pH catalyzed cleavage results in a 2′,3′-cyclic phosphate at the 3′ end and a free hydroxyl at the 5′ end. The reaction proceeds with a calculated rate of 1.1 min−1 at room temperature in cacodylate buffer at pH 5.0. The rate of cleavage is dependent on the pH and shows an optimum around pH 4.0. The rate constant is independent of RNA concentration, indicating to an intramolecular reaction. Autocatalytic cleavage at low pH, in the absence of a metal ion requirement, adds to the reaction possibilities that may have existed on the prebiotic earth.
Resumo:
The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.
Resumo:
The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme’s active site.